13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68553381 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 3F-2.

F e; matches s leaving '+ ey matches s leaving s”
F eies matches s leaving s”

F e; matches s leaving s

F ey | eo matches s leaving s’

F eo matches s leaving s

ey | ea matches s leaving s

F e matches s leaving s
F e* matches s leaving s

F e matches s leaving s F e* matches s leaving s”
F e* matches s leaving s”

Exercise 3F-3.
It cannot be done, with the given restrictions on rule constructions.

For example, this is an attempt at making a rule of inference for ejes:

F e; matches s leaving S ey matches S’ leaving S777
- ejeo matches s leaving S

As seen in the F ("h” | 7e”) %« matches "hello” leaving example in Question 2, a given
regex may derive multiple instances of suffices. Hence we need to portray all of e;’s possible
suffices as a set if we want our semantics to be deterministic. However, that would mean
eo will have to consider all those possible suffices (portrayed as S’ above), which cannot be
done with the given restrictions concerning there being finite and fixed set of hypotheses.

Another attempt at making a rule for ejes:

s=ey ey S777
- ejeo matches s leaving S

This attempt shows that for all possible suffices S, a corresponding string s can be
constructed by appending the suffix S to the regexes e; and e;. However, this is not a
correct construction of the string s, since e; and ey are both regular expressions, not strings,
and S is a set of strings, not a string. Hence the constructed s is not a valid string In this
scenario.

Peer Review ID: 68553381 — enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68553381 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 3F-2.

F e; matches s leaving '+ ey matches s leaving s”
F eies matches s leaving s”

F e; matches s leaving s

F ey | eo matches s leaving s’

F eo matches s leaving s

ey | ea matches s leaving s

F e matches s leaving s
F e* matches s leaving s

F e matches s leaving s F e* matches s leaving s”
F e* matches s leaving s”

Exercise 3F-3.
It cannot be done, with the given restrictions on rule constructions.

For example, this is an attempt at making a rule of inference for ejes:

F e; matches s leaving S ey matches S’ leaving S777
- ejeo matches s leaving S

As seen in the F ("h” | 7e”) %« matches "hello” leaving example in Question 2, a given
regex may derive multiple instances of suffices. Hence we need to portray all of e;’s possible
suffices as a set if we want our semantics to be deterministic. However, that would mean
eo will have to consider all those possible suffices (portrayed as S’ above), which cannot be
done with the given restrictions concerning there being finite and fixed set of hypotheses.

Another attempt at making a rule for ejes:

s=ey ey S777
- ejeo matches s leaving S

This attempt shows that for all possible suffices S, a corresponding string s can be
constructed by appending the suffix S to the regexes e; and e;. However, this is not a
correct construction of the string s, since e; and ey are both regular expressions, not strings,
and S is a set of strings, not a string. Hence the constructed s is not a valid string In this
scenario.

Peer Review ID: 68553381 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68553381 — enter this when you fill out your peer evaluation via gradescope

Page 7

Exercise 3F-4.

The equivalence of regular expressions is decideable. All regexes can be turned into a
Deterministic Finite Automaton (DFA), and all equivalent regexes have the same unique
minimal DFA. Hence all that is needed to do is turn the regexes into DFA, minimalize them,
and compare. If they are equal, the regexes are equivalent.

Exercise 3F-5.

The current implementation of the program makes the arithmetic solver replace each
arithmetic variable given from the SAT solver sequentially from -127 to 128 and evaluate the
resulting statements one-by-one, case-by-case. In case of the two last test cases (test-35.input
and test-36.input), there are three integer variables x, y, and z. (The other cases have at
most two.) This basically means for these last two cases, the solver will go through three
nested for loops, exchanging integer values from -127 to 128 for each of the variables, until
it finds a solution or it runs out of possiblities. This is why these two take so long - it takes
cubic time to complete. (In fact test-35.input has no solution, which means it will interate
through all the possible combos before finishing, meaning it takes even longer) Therefore, if
I had to change one module to improve performance, I would change the arith module. As
for how, one could add a simple semantic ”sensor” that can read the integer inequalities, and
iterate only through the possible cases and ignore the impossible ones (for example, since
test-35.input contains x < 12 as one of the predicates, I will not bother computing after the
loop passes = 12 and up.)

The "egregious defect” seems to be situated in exp_to_cnf in exp.ml. While [won’t try to
elaborate on the underlying reasons why it happens, it appears that when trying to convert
some of the test cases (i.e. test-27.input), it is unable to group the same predicates (e.g.
(x) = (5)), and as a result, it creates multiple instances of the same predicate under different
names.

Peer Review ID: 68553381 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68553381 — enter this when you fill out your peer evaluation via gradescope

Page 9

Exercise 3F-4.

The equivalence of regular expressions is decideable. All regexes can be turned into a
Deterministic Finite Automaton (DFA), and all equivalent regexes have the same unique
minimal DFA. Hence all that is needed to do is turn the regexes into DFA, minimalize them,
and compare. If they are equal, the regexes are equivalent.

Exercise 3F-5.

The current implementation of the program makes the arithmetic solver replace each
arithmetic variable given from the SAT solver sequentially from -127 to 128 and evaluate the
resulting statements one-by-one, case-by-case. In case of the two last test cases (test-35.input
and test-36.input), there are three integer variables x, y, and z. (The other cases have at
most two.) This basically means for these last two cases, the solver will go through three
nested for loops, exchanging integer values from -127 to 128 for each of the variables, until
it finds a solution or it runs out of possiblities. This is why these two take so long - it takes
cubic time to complete. (In fact test-35.input has no solution, which means it will interate
through all the possible combos before finishing, meaning it takes even longer) Therefore, if
I had to change one module to improve performance, I would change the arith module. As
for how, one could add a simple semantic ”sensor” that can read the integer inequalities, and
iterate only through the possible cases and ignore the impossible ones (for example, since
test-35.input contains x < 12 as one of the predicates, I will not bother computing after the
loop passes = 12 and up.)

The "egregious defect” seems to be situated in exp_to_cnf in exp.ml. While [won’t try to
elaborate on the underlying reasons why it happens, it appears that when trying to convert
some of the test cases (i.e. test-27.input), it is unable to group the same predicates (e.g.
(x) = (5)), and as a result, it creates multiple instances of the same predicate under different
names.

Peer Review ID: 68553381 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68553381 — enter this when you fill out your peer evaluation via gradescope

Page 11

