Question assigned to the following page: 2

Peer Review ID: 311005776 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-1. Regular Expression, Large-Step [10 points]. Regular Expressions
are commonly used as abstractions for string matching. Here is an abstract grammar for
regular expressions:

e n= g’ singleton — matches the character X
| empty skip — matches the empty string
| e e concatenation — matches e; followed by es
| e1|es or — matches e; or ey
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

| [’x” —”y”] matches any character between X and y inclusive
| et matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The last four
cases can be defined in terms of the first five. We also give an abstract grammar for strings
(modeled as lists of characters):

s == nil empty string

| M

x” i1 s string with first character X and other characters s

”» "

We write "bye” as shorthand for ”b” :: ”y” :: ”e” :: nil. This exercise requires you to give
large-step operational semantics rules of inference related to regular expressions matching
strings. We introduce a judgment:

I e matches s leaving s’

The interpretation of the judgment is that the regular expression e matches some prefix of
the string s, leaving the suffix s’ unmatched. If s’ = nil then r matched s exactly. Examples:

F ”h”(”e”+) matches "hello” leaving "110”

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

F ("n” | ”e”)x matches "hello” leaving "ello”
F ("n” | ”e”)* matches "hello” leaving "hello”
F ("h” | ”e”)* matches "hello” leaving ”110”

Here are two rules of inference:

P . of

s="%x"1s
F”x” matches s leaving s’ F empty matches s leaving s

Give large-step operational semantics rules of inference for the other three primal regular
expressions.

Peer Review ID: 311005776 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 2

Peer Review ID: 311005776 — enter this when you fill out your peer evaluation via gradescope

Solution: We give the large-step operational semantics rules for our primitive regular
expressions as follows:
singleton and skip are repeated from above for holisticity.

s="x":¢

. singleton - ski
F 7x” matches s leaving s’ & F empty matches s leaving s P
: / / ; "
e; matches s leaving ' e; matches s’ leaving s
- 7 concat
F e; es matches s leaving s
e1 matches s leaving s es matches s leaving &' .
; or-left or-right

F e;1 | ea matches s leaving s F e1 | e2 matches s leaving s

empty matches s leaving s
F e * matches s leaving s

kleene-star-end

e matches s leaving s e x matches s’ leaving s”
F e x matches s leaving s”

kleene-star-recurse

Non-solution stuff: For fun, and to sort of check my understanding, here are inference
rules for the last four expressions as follows:

s=c :: s Ve € set of valid characters
. matches s leaving s

any-single

Ve € ["2” —7y”]. empty | ¢ matches s leaving s

- any-between
F [?2” —”y”] matches s leaving s &

(e ex) matches s leaving s’

" one-or-more
F e + matches s leaving s’

empty | e matches s leaving s

- ZEero-or-one
F e? matches s leaving s’

Peer Review ID: 311005776 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 311005776 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F ”x” matches s leaving {s' | s ="x" 1 §'} F empty matches s leaving {s}

F e; matches s leaving S+ e; matches s leaving S’
F ey | ex matches s leaving S U S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and ejes. You may not place
a derivation inside a set constructor, as in: {z | Jy. F e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

Solution: We attempt to define the inference rules for e* and (e; e;) as follows:

F e; matches s leaving S Vs € S. F ey matches s’ leaving S,
k€1 e; matches s leaving J,, S%,

concat

F empty | e matches s leaving S Vs’ € S. | empty | e * matches s leaving S%,

. Kleeries
F e * matches s leaving |, S, cene-star

This fails however when considering how the set S could be infinite (consider .x which
yields an uncountably infinite set of strings). Thus, when iterating over all strings in S in
the latter premise in both inference rules, we risk never completing an iteration. In a sense,
this corresponds to having infinite hypotheses.

Furthermore, Vs € S F e matches s leaving S’ is equivalent to writing {s' |[Vs € S F
e matches s leaving '}, which includes a derivation inside a set constructor. This only further
invalidates these derivations.

Peer Review ID: 311005776 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 311005776 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-3. Equivalence [7 points|. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ ¢ iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e ~ ey iff Vs € S. F e; matches s leaving S; A F e; matches s leaving Sy —
S1 =Sy (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ es is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

Solution: Let us define the languages for e; and ey as Ly and Ly respectively. We then
check whether ((L1ULy) N (L;ULy)) = () through defining a DFA, D', of which accepts only
strings of this form (DFAs are capable of handling set intersection, union, and complements).
If the language of D' = (), then it follows that e; ~ ey (this is possible as checking whether
the language of a DFA is empty is decidable).

Non-solution stuff: The following are for myself for developing a holistic understand-
ing. These need not to be counted towards my solution, since it would likely be far too many
sentences and this could be wrong...

We could also find the minimum DFA for both the languages of e; and e, let’s call these
minimum DFAs D; and D, respectively. It is a fact that the minimum DFA for a language
is unique. Thus it follows that if D; = D, then e; ~ eg, that is, if D; is isomorphic to D,
they are indeed the same DFA, and by definition of a DFA, have the same language.

We could also reference the pumping lemma and find a point p where the strings accepted
by both regular expressions have seemingly repeated themselves. From here, we simply check
whether the string xyz is identical in both regular expressions, where x and z are prefixes
and suffices, respectively, and y is a repeated substring. Or we could naively check all strings
of up to length p, and compare whether both are accepted by each regular expression.

Note: All these methods work because saying we leave sets from matching strings with a
regular expression seemingly removes the non-deterministic nature we had aforementioned,
thus we can represent these as DFAs.

Peer Review ID: 311005776 — enter this when you fill out your peer evaluation via gradescope

No questions assigned to the following page.

Peer Review ID: 311005776 — enter this when you fill out your peer evaluation via gradescope

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given DPLL-style
CNF SAT solver with the given theory of bounded arithmetic. In particular, you must
update only the Main.solve function. Your updated solver must be correct. This notably
implies that it must correctly handle all of the included test cases — we use diff for some
testing, but if you change only the listed method you should end up with the same answers
as the reference.

In addition, create an example “tricky

Submit your .ml and .input files.

v

input that can be parsed by our test harness.

Peer Review ID: 311005776 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 311005776 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

Solution: This implementation of SAT solving with DPLL(T) has a significant pitfall
when it comes to checking for satisfying assignments to numerical variables in arithmetic
expressions. While we bound the range of variables between —127 and 128, we ultimately end
up exhaustively checking all possible variable assignments, only performing early stopping
when the criterion of a valid arithmetic model being found in arith.arith has been met.
This means we exhaustively check all 256 values within the range [—127, 128] inclusive, only
stopping when we find a valid assignment of variables satisfying our CNF expression. Thus,
arith.arith proves to be the bottleneck of our algorithm, as it has a runtime which scales
exponentially with the number of variables defined in our CNF. To be precise, this algorithm
has a runtime of O(256™) where n is the number of variables which exist in our CNF. This
exhausts all possible variable-value combinations in the worst-case scenario (the worst-case
being our CNF is unsatisfiable, thus never reaching the early stopping criterion).

Currently, we can see the adverse negative consequences this implementation is imposing
on our runtime in test cases 35 and 36, where we have 3 variables defined in our CNF. Indeed
test case 35 takes the longest of any to run, as it is unsatisfiable and represents the worst-
case. When we try to add a fourth variable to our CNF, the runtime becomes seemingly far
too great, and we wait for eternities.

This bottleneck in our implementation represents an egregious defect, and using a method
such as the Simplex algorithm would greatly reduce the worst-case runtime of our algorithm.
We could also use heuristical approaches, such as pruning clauses and variable assignments
to avoid repeated and unnecessary variable-assignment combinations (eg. given z +y = 10
and assigning x = 3, we can convert this to y = 7 and avoid exhaustively checking all 256
variable assignments).

Peer Review ID: 311005776 — enter this when you fill out your peer evaluation via gradescope

