13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68538793 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 3F-2. Regular Expression, Large-Step

e u= %" singleton — matches the character X
| empty skip — matches the empty string
| el e concatenation — matches e; followed by es
| e] e or — matches e; or e;
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

| .

| [’x” —=7y”] matches any character between X and y inclusive

| e+ matches 1 or more occurrences of e

| e? matches 0 or 1 occurrence of e
Concatenation:

Concatenation is simply applying the match twice, switching the string and the
match character (or set of characters) . We see if we can match e;. If we do we
look for a match of e on the remaining sub-string.

F ey matches s leaving s’ F e, matches s’ leaving s”

F eje, matches s leaving s”

Or:

The OR operation is just two separate applications of the same rule. It’s clearly
symmetrical as we either match e; or ez (or none). The key here is we do not
generate an additional s”, instead we search the same string s for both cases
producing only s’.

F e; matches s leaving s’

F es|es matches s leaving s

F e, matches s leaving s’

F e1]|es matches s leaving s’

Kleene star (*):

The Kleene star is a little more challenging. I break this into two cases, match
zero, match many. We begin with match zero.

F ex matches s leaving s’

Okay that was easy. Lets look at the harder case. We want to match each
occurrence. I could match the string, produce s’, produce the next string and
match s”, but this is all looking very similar to a“while” expression. We want
to keep matching“while” there’s more sub-string to search. We can basically
copy paste the while rule as they hinge on the same recursive idea.

F e matches s leaving s’ ex matches s’ leaving s”

F ex matches s leaving s”

Peer Review ID: 68538793 — enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68538793 — enter this when you fill out your peer evaluation via gradescope

Page 5

These look very similar to while false and while true. Very suspicious!

Exercise 3F-3.

Concatenation:

1. This new structure requires that we match a single string, leaving a set of
strings. Trying to do this type of judgement on concatenation cannot be
done. A simple way to illustrate this:

F e; matches s leaving S’ F e, matches 8’ leaving S”

 eje, matches s leaving S”

(1) Is clearly incorrect, we do not generate the intermediate term s’, and
it’s not possible to consider a match on the set S’. Assuming s’ is an element
of the set S’ doesn’t help us because this fails the “finite” requirement.
There are an unknown number of elements in S’.

F e; matches s leaving S’ F e, matches s leaving S”

F ejes matches s leaving S”

(2) Has the merit that s exists and produces real sets S’ and S”. The issue
is that this is an incorrect implementation of concatenation. S” is not the
set of strings which are matched by ejes.

F ey matches s leaving S’ Vs’ € S’ I ey matches s’ leaving 8"
 eje, matches s leaving S”

(3) Has the benefits of being correct, but is essentially a rewrite of (1) and
as the second hypothesis is quantified and not finite.

It seems there is a specific problem preventing us from writing these determinis-
tic rules of the form: match string leaving set. The problem is trying to transfer
information from the result of applying e; to the input of e;. I see this as a
type error, where we're trying to fit a square peg in a round hole (and the hole
radii isn’t a factor of /2 larger). The results are in the form of a set, but the
input must be a single string. Therefore under the constraints provided I posit
it is not possible to write a rule which describes concatenation.

Peer Review ID: 68538793 — enter this when you fill out your peer evaluation via gradescope

Kleene star (*):

The Kleene star for no matches is easy again.

F ex matches s leaving {s}
The problem arises in the following rules. We want something like:

F e matches s leaving S’ Vs’ € S’ ex matches s’ leaving S”

F ex matches s leaving s”

Immediately, we see this is the same problem we saw earlier. We can’t get this
square (the set S’) peg into the round hole (the single string matched by: e*
matches s’ leaving S”). Therefore by the same logic we can conclude it’s not
possible.

Exercise 3F-4.

Equivalence:

Three sentence answer: We can transform any regular expression to a DFA
(deterministic finite automaton), which once composed we can minimize caus-
ing the DFA to be unique. This means any two expressions e; ~ ey will have
DFfLm-m-,m-Zede1 = DFAm,-m-mizedez. Therefore we do not need to compute the
possibly infinite sets S; and Sy as we can prove that e; = es by only comparing
their minimized DFA.

Some context that is longer than three sentences: A minimized DFA
represents the least processing steps needed to pattern match. There are exist-
ing methods to reduce an arbitrary regular expression to a DFA and methods to
minimize an arbitrary DFA. Because we can reduce regular expressions to DFA
form, we know they do not form a Turing Complete language. This means we
have (unfortunately) not solved the halting problem, but we can compare our
expressions.

Exercise 3F-5.
T

(((a*a) + (bxb)) =(c*c)) && (a>128) & (b > 128) && (c > 128)
Tl.l

(((a*a) + (bxb)) =(c*c)) && (a>128) & (b > 128) && (c > 128)
T3

(((a *x a) + (b x b)) (c * c)) && (a > -127) && (b > -127) && (c > -127)

T2.1

Peer Review ID: 68538793 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68538793 — enter this when you fill out your peer evaluation via gradescope

Page 8

Kleene star (*):

The Kleene star for no matches is easy again.

F ex matches s leaving {s}
The problem arises in the following rules. We want something like:

F e matches s leaving S’ Vs’ € S’ ex matches s’ leaving S”

F ex matches s leaving s”

Immediately, we see this is the same problem we saw earlier. We can’t get this
square (the set S’) peg into the round hole (the single string matched by: e*
matches s’ leaving S”). Therefore by the same logic we can conclude it’s not
possible.

Exercise 3F-4.

Equivalence:

Three sentence answer: We can transform any regular expression to a DFA
(deterministic finite automaton), which once composed we can minimize caus-
ing the DFA to be unique. This means any two expressions e; ~ ey will have
DFfLm-m-,m-Zede1 = DFAm,-m-mizedez. Therefore we do not need to compute the
possibly infinite sets S; and Sy as we can prove that e; = es by only comparing
their minimized DFA.

Some context that is longer than three sentences: A minimized DFA
represents the least processing steps needed to pattern match. There are exist-
ing methods to reduce an arbitrary regular expression to a DFA and methods to
minimize an arbitrary DFA. Because we can reduce regular expressions to DFA
form, we know they do not form a Turing Complete language. This means we
have (unfortunately) not solved the halting problem, but we can compare our
expressions.

Exercise 3F-5.
T

(((a*a) + (bxb)) =(c*c)) && (a>128) & (b > 128) && (c > 128)
Tl.l

(((a*a) + (bxb)) =(c*c)) && (a>128) & (b > 128) && (c > 128)
T3

(((a *x a) + (b x b)) (c * c)) && (a > -127) && (b > -127) && (c > -127)

T2.1

Peer Review ID: 68538793 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68538793 — enter this when you fill out your peer evaluation via gradescope

Page 10

Kleene star (*):

The Kleene star for no matches is easy again.

F ex matches s leaving {s}
The problem arises in the following rules. We want something like:

F e matches s leaving S’ Vs’ € S’ ex matches s’ leaving S”

F ex matches s leaving s”

Immediately, we see this is the same problem we saw earlier. We can’t get this
square (the set S’) peg into the round hole (the single string matched by: e*
matches s’ leaving S”). Therefore by the same logic we can conclude it’s not
possible.

Exercise 3F-4.

Equivalence:

Three sentence answer: We can transform any regular expression to a DFA
(deterministic finite automaton), which once composed we can minimize caus-
ing the DFA to be unique. This means any two expressions e; ~ ey will have
DFfLm-m-,m-Zede1 = DFAm,-m-mizedez. Therefore we do not need to compute the
possibly infinite sets S; and Sy as we can prove that e; = es by only comparing
their minimized DFA.

Some context that is longer than three sentences: A minimized DFA
represents the least processing steps needed to pattern match. There are exist-
ing methods to reduce an arbitrary regular expression to a DFA and methods to
minimize an arbitrary DFA. Because we can reduce regular expressions to DFA
form, we know they do not form a Turing Complete language. This means we
have (unfortunately) not solved the halting problem, but we can compare our
expressions.

Exercise 3F-5.
T

(((a*a) + (bxb)) =(c*c)) && (a>128) & (b > 128) && (c > 128)
Tl.l

(((a*a) + (bxb)) =(c*c)) && (a>128) & (b > 128) && (c > 128)
T3

(((a *x a) + (b x b)) (c * c)) && (a > -127) && (b > -127) && (c > -127)

T2.1

Peer Review ID: 68538793 — enter this when you fill out your peer evaluation via gradescope

(((a*xa) + (bxb) + (A *1)) = (c *c)) && (a > -127) && (b > -127) &&
(c > -127) && (1 > -127)

T2.2

((at=2a) & (@< 7)) Il ((a>6) & (a < 7))

1. These final two test cases require enumeration on three variables. This
causes the values required to be checked to be 256*%256*256 in the worst
case (this occurs if the inequalities on x, y, and z are unsatisfiable). To
show this I developed a few test cases Ty, T1.1, To and Tb;. 17 and
T, 1 are UNSAT, but 75 and 751 are SAT. When we run these on our
solver we find that 77 takes considerably longer than T5. This difference
is exaggerated when considering 77 ; and 75 ;. While 75 ; will terminate
producing SAT fairly quickly, I left 737.; running on my PC for over 40
minutes and it did not terminate. This is because DPLL does not handle
arithmetic expressions efficiently. We must implement EUF abstractions
rather than iterate over the values. Finally, when considering T5 5 I found
the lack of an abstraction causes the solver to continuously try to satisfy
the first two literals, even though arithmetically we can see it’s obviously
UNSAT. This results in the arithmetic solver being called many tens of
thousands of times if not more for a simple query. From these experiments
I show that even for small (256 valued) integers the brute force method
quickly become intractable. I would rewrite the arithmetic solver, and I
argue the best instrument to make the solver efficient is to utilize EUF.

2. I would rewrite the arith.ml module. I select this one because once we
begin solving arithmetic constraints of any reasonable size this becomes
the largest bottleneck. I think the strongest change to this module would
be to change it from a bounded model to an EUF based approach. This
would allow us to reason about much more complex questions without
needing to enumerate the entire bound. Once we can check arithmetic
without enumeration we can increase the bounds on what size of variables
our model checker can verify without a dramatic increase in run-time.

3. Ibelieve a serious defect is the inability to generate stronger formulas when
new constraints are added to the boolean model. Iran this query, T, for 12
hours, it never finished. Checking any arithmetic of the form: arith,,sqa:V
arithynsq results in extremely poor performance. The performance issues
arise from many spurious SAT results due to poor linking between the
arithmetic theory solver and the boolean SAT solver. The solver should
learn from the arithmetic solver that (a > 6) —!(a < 7), but it continues
to learn terms of the form (!(a > 6)||(a < 7)||/(e < 7)|[(a > 6)) (this
reduces to true, but many of the test cases are weak without returning
true directly). These weak constraints basically add nothing to prune our
search space.

Te

((a>6) & (@< 7)) |l ((a>6) & (a < 7))

Peer Review ID: 68538793 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68538793 — enter this when you fill out your peer evaluation via gradescope

Page 13

