13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68510302 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 3F-2

The large-step rules for the other three primal regular expressions are:

F e; matches s leaving s” F ey matches s” leaving s’
F e, e; matches s leaving s

 e1 matches s leaving s F ey matches s leaving s’
Fe1 | e; matches s leaving s - e1 | e; matches s leaving s’

F e matches s leaving s” | e * matches s” leaving s’
F e « matches s leaving s F e x matches s leaving s

Peer Review ID: 68510302 — enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68510302 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 3F-3

We cannot modify our regular expression operational semantics to capture
multiple suffixes within our current framework. Suppose we were trying to
write a rule for concatenation; e; es. We could start our rule as:

F e; matches s leaving S' 777
F e; eo matches s leaving S

But how would we continue it? We would need to add a condition for e,
matching any of the strings in S/, of which there could be arbitrarily many.
Thus, we would need an arbitrarily large number of conditions (unless we
put a derivation inside a set constructor, which we have disallowed). One
bad rule would be:

I e; matches s leaving S” | ey matches S’[0] leaving S
F e; eo matches s leaving S

This rule chooses an arbitrary string from the first matching set to use for the
second matching set. However, this would fail for something like (. * empty)
matching “a”. If we have F . * matches “a” leaving {“a”, nil}, then we do
not have - empty matches “a” leaving anything. This would erroneously say
that (. % empty) does not match “a”. Another bad rule would be:

F e; matches s leaving S; F ey matches s leaving S5
F e; eo matches s leaving S7 A S

This is obviously faulty since e, should be applied to s after e;. Thus any
combination of Si, .55 in the bottom part of the rule would be erroneous.

Peer Review ID: 68510302 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68510302 — enter this when you fill out your peer evaluation via gradescope

Page 7

Exercise 3F-4

Determining whether e; ~ ey is a decidable problem. It’s easy to see that
ey ~ ez by our definition <= L(e;) = L(ez), where we define that
L(e) = {s: I e matches s leaving S where nil € S}. This is the language
“accepted by” the regular expression. Kleene’s Theorem says that the set
of languages which are acceptable by regular expressions, non-deterministic
finite automata, and deterministic finite automata are the same. So the
regular expressions e; and es can be converted to DFAs (proofs of Kleene’s
Theorem show how), and determining whether two DFAs accept the same
language is also decidable (this is a well-known result).

Peer Review ID: 68510302 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68510302 — enter this when you fill out your peer evaluation via gradescope

Page 9

Exercise 3F-5

The last two included tests take a comparatively long time to run because
they consist of a list of theory clauses which all need to be true in order for
the SMT problem to be satisfiable. An example (test 36) is given here:

x>y) && (y > z) & (z = 10) && (x < 13)

There are four symbols here from the perspective of DPLL, and all must be
true. As such, the efficiency of DPLL(T) in this case depends solely on the
efficiency of the arithmetic constraint solver. But our arithmetic constraint
solver is grossly inefficient — simply looping from —127 to 128 in each variable
until the constraints are satisfied (or not). Since there is only one valid set
of variable assignments that can satisfy these constraints (and none for test
37), these tests take considerable time.

In order to improve the performance on these tests, the arithmetic con-
straint solver should be rewritten. Instead of the current method, we could
use any number of integer linear programming algorithms to solve the con-
straints. But even if we wanted to keep the simple “looping” design, we
could:

e Set variables according to numeric equality clauses from the beginning
instead of looping through all possible values: z = 10.

e Only loop each variable within the most constrained range given by
numeric inequality clauses: x < 13 means only loop x up to 13.

At least for tests 35 and 36, this would greatly reduce the search space of the
arithmetic constraint solver.

As I said, there are a number of defects in the provided code relating to
performance. But an egregious defect relating to accuracy is the fact that
it only considers variable values from —127 to 128. This would erroneously
label a host of problems as unsatisfiable; just one such example is:

(x -y > 120) && (y > 80)

This is solvable with x = 250 and y = 90. But any solution requires we have
x > 200, which is out of bounds for our current constraint solver.

Peer Review ID: 68510302 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68510302 — enter this when you fill out your peer evaluation via gradescope

Page 11

