13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68557895 — enter this when you fill out your peer evaluation via gradescope

Page 3

Answer 3F-1
Rule for ejes

F e; matches s leaving s’ | e; matches s leaving s”
F e;e; matches s leaving s”

Rules for e eq

F e; matches s leaving '
I e4|e; matches s leaving ¢’

F e, matches s leaving '
I e4|e; matches s leaving ¢’

Rules for ex

F empty matches s leaving s
F ex matches s leaving s

F e matches s leaving s' F ex matches s’ leaving s”
F ex matches s leaving s”

Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F ”x” matches s leaving {s' | s ="x" :: §'} - empty matches s leaving {s}

F e; matches s leaving S F e; matches s leaving S’
F ey | ea matches s leaving SU S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and ejes. You may not place
a derivation inside a set constructor, as in: {z | Jy. F e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

3

Peer Review ID: 68557895 — enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68557895 — enter this when you fill out your peer evaluation via gradescope

Page 5

Answer 3F-2
Rule for ejes

F e; matches s leaving S; F e; matches s’ € S; leaving Sy
F eje, matches s leaving S

Rules for ex

- empty matches s leaving {s}

F ex matches s leaving {s}

F e matches s leaving S; F ex matches s’ € S; leaving Sy
F ex matches s leaving Sy

Exercise 3F-3. Equivalence [7 points|. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ co for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ c iff ¢ halts. We can define a similar equivalence relation for regular
expressions: ey ~ ey iff Vs € S. F e; matches s leaving S; A F e; matches s leaving S —>
S; = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ e is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

Answer 3F-3 The equivalence of two regular expressions is decidable. Given two regular
expressions e; and ez, one can expand or rewrite them using the abstract grammar that
defines regular expressions to see if they can be expressed in the same way. Essentially, you
compute the result of the two regular expressions as some combination of elements such as

[I:l(ok (1)

x”, empty, [“x” - “y”], etc, to see if the two are equivalent.

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given DPLL-style
CNF SAT solver with the given theory of bounded arithmetic. In particular, you must
update only the Main.solve function. Your updated solver must be correct. This notably
implies that it must correctly handle all of the included test cases — we use diff for some
testing, but if you change only the listed method you should end up with the same answers
as the reference.

In addition, create an example “tricky” input that can be parsed by our test harness.

Submit your .ml and .input files.

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I

4

Peer Review ID: 68557895 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68557895 — enter this when you fill out your peer evaluation via gradescope

Page 7

Answer 3F-2
Rule for ejes

F e; matches s leaving S; F e; matches s’ € S; leaving Sy
F eje, matches s leaving S

Rules for ex

- empty matches s leaving {s}

F ex matches s leaving {s}

F e matches s leaving S; F ex matches s’ € S; leaving Sy
F ex matches s leaving Sy

Exercise 3F-3. Equivalence [7 points|. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ co for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ c iff ¢ halts. We can define a similar equivalence relation for regular
expressions: ey ~ ey iff Vs € S. F e; matches s leaving S; A F e; matches s leaving S —>
S; = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ e is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

Answer 3F-3 The equivalence of two regular expressions is decidable. Given two regular
expressions e; and ez, one can expand or rewrite them using the abstract grammar that
defines regular expressions to see if they can be expressed in the same way. Essentially, you
compute the result of the two regular expressions as some combination of elements such as

[I:l(ok (1)

x”, empty, [“x” - “y”], etc, to see if the two are equivalent.

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given DPLL-style
CNF SAT solver with the given theory of bounded arithmetic. In particular, you must
update only the Main.solve function. Your updated solver must be correct. This notably
implies that it must correctly handle all of the included test cases — we use diff for some
testing, but if you change only the listed method you should end up with the same answers
as the reference.

In addition, create an example “tricky” input that can be parsed by our test harness.

Submit your .ml and .input files.

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I

4

Peer Review ID: 68557895 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68557895 — enter this when you fill out your peer evaluation via gradescope

Page 9

am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

Answer 3F-4 The last two test cases take a lot of time because the algorithm as imple-
mented does not efficiently prune the search for integer values that can satisfy the arithmetic
clauses. The Arith.arith function tries all values for each variable within the bounded range
[-127, 128]. Even with just three variables, that could mean that the program has to check
well over 16 million possibilities. However, the program could significantly reduce the search
space by prematurely terminating some for loops based on information gathered when check-
ing to see if a particular assignment of values to variables creates a valid model.

For example, if we check the assignment of values a = 1, b = 2, and ¢ = 3 and find that
the model is not valid because of some condition on a and b, it is a waste of time to modify
the value of ¢ and model check again. However, as it is written, the code will continue to
try different values of ¢ while keeping the values of a and b the same. This results in the
unnecessary enumeration of invalid candidate models.

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

Peer Review ID: 68557895 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68557895 — enter this when you fill out your peer evaluation via gradescope

Page 11

