13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68499702 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 3F-2. Regular Expression, Large-Step.

The large-step operational semantics rules of inference are listed below.

e i=e; ey
H I e; matches s leaving s; F ey matches s; leaving s
F e1 es matches s leaving s’
e=e | es
I e; matches s leaving s’
Fe1 | e; matches s leaving s/
I e; matches s leaving s’
Fe1 | e; matches s leaving s/
€ .= ex

F e * matches s leaving s

e matches s leaving s; F e x matches s; leaving s’

F e x matches s leaving s’

Exercise 3F-3. Regular Expression and Sets.

It is impossible to do the same thing for ex or e; ey because their rules of inference don’t
hvae a finite and fixed set of hypotheses.

For ex,
F e * matches s leaving S
F e matches s leaving S’ Vs; € S’ e x matches s; leaving S;
F e x matches s leaving U; S;
For e; ey,

F e; matches s leaving S’ Vs; € S’ F ey matches s; leaving S;

F e eo matches s leaving U; S;

Since the size of S’ can be arbitrarily large and can vary condition by condition, meaning
that we don’t have finite and fixed hypotheses. The two rules are not reasonable.

2

Peer Review ID: 68499702 — enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68499702 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 3F-2. Regular Expression, Large-Step.

The large-step operational semantics rules of inference are listed below.

e i=e; ey
H I e; matches s leaving s; F ey matches s; leaving s
F e1 es matches s leaving s’
e=e | es
I e; matches s leaving s’
Fe1 | e; matches s leaving s/
I e; matches s leaving s’
Fe1 | e; matches s leaving s/
€ .= ex

F e * matches s leaving s

e matches s leaving s; F e x matches s; leaving s’

F e x matches s leaving s’

Exercise 3F-3. Regular Expression and Sets.

It is impossible to do the same thing for ex or e; ey because their rules of inference don’t
hvae a finite and fixed set of hypotheses.

For ex,
F e * matches s leaving S
F e matches s leaving S’ Vs; € S’ e x matches s; leaving S;
F e x matches s leaving U; S;
For e; ey,

F e; matches s leaving S’ Vs; € S’ F ey matches s; leaving S;

F e eo matches s leaving U; S;

Since the size of S’ can be arbitrarily large and can vary condition by condition, meaning
that we don’t have finite and fixed hypotheses. The two rules are not reasonable.

2

Peer Review ID: 68499702 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68499702 — enter this when you fill out your peer evaluation via gradescope

Page 7

Exercise 3F-4. Equivalence.

We assume that e; and ey operates on the same language. To compute whether 2 regular
expressions e; and e, are equivalent, we need to

1. Construct NFAs for regular expressions (Algorithm 3.23). e; — N; and e; — Ns.
2. Convert NFAs to DFAs (Algorithm 3.20). Ny — D; and Ny — Ds.
3. Minimize the DFAs (Algorithm 3.39). Dy — D} and Dy — Dj,.

4. Check whether the two minimized DFAs D] and D), are equivalent by DFS.

If D] is equivalent to D), e; and ey are equivalent; otherwise, e; and e are not.

The algorithms mentioned above are from Compilers: Principles, Techniques, and Tools,

2nd edition.

Exercise 3F-5. SAT Solving.

The last two test cases (35 & 36) take longer because they involve more arithmetic inequalities
than others.

To solve arithmetic inequalities, the function Arith.arith just goes over all 256 num-

bers for every variable to get the possible answer (line 68 - 71).

61
62
63
64
65
66
67
68
69
70
71
72
73

Listing 1: code snippet from arith.ml

(» for each variable, try all of values for it in a bounded range x)
let rec bounded_search variables model_sofar =
if StringSet.is_empty variables then
consider model_sofar
else begin
let variable = StringSet.choose variables in
let variables = StringSet.remove variable variables in
for 1 = lower_bound to upper_bound do
let model = StringMap.add variable i model_sofar in
bounded_search variables model
done
end
in

The brute-force way has a time complexity of O(256™) for n different arithmetic variables,
which can be extremely time-consuming for larger n.

To improve the performance, we might use linear programming methods such as the

Simplex Algorithm to solve the inequalities. That may give a better performance than the
simple brute-force way.

3

Peer Review ID: 68499702 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68499702 — enter this when you fill out your peer evaluation via gradescope

Page 9

Exercise 3F-4. Equivalence.

We assume that e; and ey operates on the same language. To compute whether 2 regular
expressions e; and e, are equivalent, we need to

1. Construct NFAs for regular expressions (Algorithm 3.23). e; — N; and e; — Ns.
2. Convert NFAs to DFAs (Algorithm 3.20). Ny — D; and Ny — Ds.
3. Minimize the DFAs (Algorithm 3.39). Dy — D} and Dy — Dj,.

4. Check whether the two minimized DFAs D] and D), are equivalent by DFS.

If D] is equivalent to D), e; and ey are equivalent; otherwise, e; and e are not.

The algorithms mentioned above are from Compilers: Principles, Techniques, and Tools,

2nd edition.

Exercise 3F-5. SAT Solving.

The last two test cases (35 & 36) take longer because they involve more arithmetic inequalities
than others.

To solve arithmetic inequalities, the function Arith.arith just goes over all 256 num-

bers for every variable to get the possible answer (line 68 - 71).

61
62
63
64
65
66
67
68
69
70
71
72
73

Listing 1: code snippet from arith.ml

(» for each variable, try all of values for it in a bounded range x)
let rec bounded_search variables model_sofar =
if StringSet.is_empty variables then
consider model_sofar
else begin
let variable = StringSet.choose variables in
let variables = StringSet.remove variable variables in
for 1 = lower_bound to upper_bound do
let model = StringMap.add variable i model_sofar in
bounded_search variables model
done
end
in

The brute-force way has a time complexity of O(256™) for n different arithmetic variables,
which can be extremely time-consuming for larger n.

To improve the performance, we might use linear programming methods such as the

Simplex Algorithm to solve the inequalities. That may give a better performance than the
simple brute-force way.

3

Peer Review ID: 68499702 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68499702 — enter this when you fill out your peer evaluation via gradescope

Page 11

