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Exercise 3F-1. Regular Expression, Large-Step [10 points].
Large step operational semantics rules of inference for the remaining three forms of regular

expressions are as below:

1. Concatenation:
(e1e2)

Here, to match a concatenation of e1 and e2, we must match e1 with a prefix of s, leaving
a suffix s". Then, e2 must match with s', leaving the final unmatched suffix s".

‘e; matches s leaving s’ ‘e, matches s’ leaving s”

‘e1e; matches s leaving s”

2. Or(e1]e2)

For this, to match e1 | e2, the input string s can either match the e1 or match the e2.
Thus either of the below paths can be chosen (this becomes non-deterministic)

‘e; matches s leaving s’

‘e1|e2 matches s leaving s’
Or

‘e matches s leaving s’

‘e1|e2 matches s leaving s’

3. Kleene Star (e*)

To match e*, we can either match zero occurrences (leaving s as is) or match one
occurrence of e, followed by e* on the remainder:

So we have the following ways,

e Zero Occurrences: (Base Case)

‘e x matches s leaving s

e One or more occurrences:

‘e matches s leaving s ‘e ¥ matches s’ leaving s”

‘e * matches s leaving s”

For example, Matching ("h” | "e”)+ with "hello"
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Regular Expression: ("h” | "e”)«
Input String: "hello" ("h" :: "e" :: "I" :: "I" :: "0" :: nil)
Deriving as follows,

1. Using the Kleene Star (e*) Rule:

‘("h”|”€”) * matches ”hello” leaving ” hello”

Here, Zero occurrences match directly, leaving the entire input string unmatched.

2. Matching One or More Occurrences:

‘(”h”|”e”) matches " hello” leaving "ello” ‘("h”|”e”) * matches ”ello” leaving ”ello”

‘("h”|”e”) * matches ”hello” leaving ”ello”

Here, we match the first “h” and leave back the “ello”

3. Applying the Or (e1 | e2) Rule:

“’h” matches " hello” leaving ”ello”

‘("h”|”e”) matches ” hello” leaving ”ello”

The | here allows us to choose “h” as the match thereby satisfying the rule

Exercise 3F-2. Regular Expression and Sets [S points].

So, here | am trying to attempt to develop a deterministic operational semantics rules for e1
e2 (concatenation) and e*( Kleene star) and see if it is possible or impossible.

1. Concatenation (e1 e2)

When matching e1e2, the intermediate suffixes generated by e1 need to be fed into
e2.

Thus,

Attempted Rule for concatenation:

‘e; matches s leaving S, Vs’ € S, ‘e, matches s’ leaving S’

‘e1ep matches s leaving |J, ¢ S’

Here, we can clearly see that the rule is invalid. The rule essentially requires evaluating
e2 for every suffix s" derived from e1, which means we cannot perform this operation
with a finite and fixed set of hypotheses. It leads to a scenario where the rule cannot
capture the full set of suffixes as intended because it implicitly demands recursive
dependency that violates the problem constraints.

2. Kleene Star (e*):
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For this, e* we need to match 0 or more repetitions which can lead to infinite
possibilities of suffixes.

This can moreover happen for self-matching patterns like the (.”a”)* on the string such
as “aaaa’.

Thus when we attempt to bring up the rule:

Base Case: ‘e* matches s leaving {s}

One or more occurrences:

‘e matches s leaving S, ‘e* matches s’ leaving S',Vs' € §

‘e* matches s leaving {s} U S’

This rule is clearly not allowed. This is because, the construction of the suffix set
requires recursive and potentially infinite applications of e, producing results that must
themselves be further evaluated through e*. This requirement can't be satisfied with
just a finite and fixed hypothesis, as the process of dealing with recursive matching is
inherently unbounded.

Exercise 3F-3. Equivalence [7 points].
Claim: e1 ~ e2 is undecidable

The equivalence relation e1~e2 asks whether two regular expressions e1 and e2 behave
exactly the same for every string. In other words, we want to check if they leave behind the
same set of suffixes for all strings in the language. This is basically saying that, no matter what
string you give them, both regular expressions should match the same suffixes every time.

The problem of figuring out whether two regular expressions are equivalent in this way is
actually undecidable. This is because:

1. Trying to Reduce to halting problem:
We know that the halting problem is undecidable. The halting problem asks whether
a given program P will stop (halt) or keep running forever for a particular input. This is
something we can't decide for every program, and we can use this fact to show that
checking whether two regular expressions are equivalent is also undecidable.

2. Encoding the Halting Problem in Regular Expressions:

To prove the undecidability, | create two regular expressions e1 and e2 that depending
on the behavior of a program P:

e e1 matches strings if and only if the program P halts.
e e2 represents a regular expression that matches strings if and only if the program P
does not halt.

By constructing these two regular expressions, we essentially encode the halting
behavior of the program into regular expressions.
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If we could decide whether e1~e2, we could see and check whether P halts or not,
which is exactly the halting problem.

Example: Suppose program P writes the string "halt" if it halts and writes nothing if it
does not halt.
We define:

¢ el1="halt" (matches the string "halt" when P halts).

e e2="" (matches nothing when P does not halt).

Now, if we could decide whether e1~e2, we could answer whether P halts:

o If e1~e2 holds, it means both regular expressions behave the same, so they match
the same set of suffixes for every string. This would imply that P halts.

o If e1~e2 does not hold, it means the two regular expressions match different sets of
suffixes, implying that P does not halt.

So, this reduction shows that if we could decide whether two regular expressions are
equivalent, we’d also be able to solve the halting problem. But since the halting problem is
undecidable, the equivalence of regular expressions is also undecidable

Exercise 3F-4. SAT Solving [6 points].

The last two tests are 35 and 36:
(x>y)&& (y>2z) && (z=10) && (x < 12)
(x>y) && (y > z) && (z=10) && (x < 13)

The last two tests take longer because of the complexity of the constraints. These tests involve
both equality (z = 10) and inequalities (x >y, y > z), which makes things more complicated for
the solver. The solver needs to handle not just the regular Boolean logic (like true/false
conditions) but also the arithmetic constraints. When it faces these, it has to spend more time
checking all the possibilities to find a solution. The part of the solver that checks the values for
X, ¥, and z might not be very efficient, especially with all the dependencies between the
variables.

One area that could be improved is the make_blocking_clause function. This function is used
when a conflict happens, and it tries to block the set of variables that caused the issue. Right
now, it checks each variable one by one, which can be slow and take up a lot of memory,
especially for large or complex problems. To make this faster, we could use better algorithms
or data structures to find the minimal conflict set, like the methods used in conflict-directed
clause learning (CDCL).
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