13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68506861 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 3F-2. Regular Expression, Large-Step
Large-step Operational Semantics Rule of Inference for Concatenation:

el matches s leaving s1 +e2 matches sl leaving s2

el e2 matches s leaving s2

Large-step Operational Semantics Rule of Inference for Or:

el matches s leaving s1
- el | e2 matches s leaving s1

= e2 matches s leaving s1
el | e2 matches s leaving sl

Large-step Operational Semantics Rule of Inference for Kleene Star:

= ex matches s leaving s

e matches s leaving s1 +ex matches s leaving s2
+ ex matches s leaving s2

Peer Review ID: 68506861 enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68506861 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 3F-3. Regular Expression and Sets

It cannot be done correctly with this given framework. For e1 e2, e1 has to be matched before
e2 to be matched, so it is impossible to be done without nesting derivations in set constructors
as e1 is required to be evaluated first. Therefore, the rule for e1 e2 has to use a derivation
inside of a set constructor, but it is incomplete. This wrong rule is present below.

t el matches s leaving S+ e2 matches S leaving S1 = {s1 | 3 s € S+ e2 matches s leaving s}
~el e2 matches s leaving S1

To avoid using a derivation inside of a set constructor, it is necessary to come up with a rule that
ensures evaluation of expressions in order like below.

el matches s leaving S1 - e2 matches s leaving S2
el e2 matches s leaving S1 N S2

As shown on the above rule, it does not use a derivation inside a set constructor. However, it
will return incorrect results because it can only check whether e1 and e2 both are matched in s,
but not in consecutive order.

Peer Review ID: 68506861 enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68506861 — enter this when you fill out your peer evaluation via gradescope

Page 7

Exercise 3F-4. Equivalence

el ~ e2 is undecidable, and | will prove it by reducing it to the halting problem, which is an
undecidable problem. For the purpose of contradiction, assume that if | could solve “e1 ~ e2”,
then | could also solve the halting problem. Assume that there is a solver for “e1 ~ e2”, so | have
an algorithm called ISEQUAL(a, b) that takes in two descriptions of regular expressions and
returns true if they are the same on all string inputs. Now, | will try to solve the halting problem.
Suppose that there is an arbitrary source code instance called “hproblem_input” which returns
true if and only if “hproblem_input” terminates in finite time. Then, | will construct a finite time
program called PQR as below:

def PQR():
hproblem_input();
return e

Which returns a regular expression e if and only if “hproblem_input” terminates in finite time.
Now | will invoke ISEQUAL(PQR, PQR). Because ISEQUAL is supposed to always make a
correct decision in finite time if two descriptions of regular expressions are the same and
because PQR returns regular expression e if “hproblem_input” terminates in finite time, it
implies that ISEQUAL can actually solve for whether “hproblem_input” halts or not. However,
the halting problem is known to be impossible to solve. Therefore, because of this contradiction,
it is impossible to solve “e1 ~ e2” in finite time which indicates that it is undecidable.

Peer Review ID: 68506861 enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68506861 — enter this when you fill out your peer evaluation via gradescope

Page 9

Exercise 3F-5. SAT Solving

The last two included tests take a comparatively long time because DPLL(T) is a
backtracking-based search algorithm. The two test cases contain comparatively more inequality
evaluations compared to other test cases, so the DPLL(T) solver needs to explore a greater
search space to figure out whether an input formula is satisfiable or not. This greater search
space in the last two test cases might impact the running time and efficiency of DPLL(T) solver.
In the code, | would rewrite the arith module first to improve performance because it currently
tries out all the possibility of integer valuations to all variables in the constraints on the given
range bounded by lower_bound and upper_bound. Instead of exhaustive linear search within
the bound, | would change it to binary search so that its running time complexity is improved. Or
alternatively, because the arith module currently runs in exponential time, | will change the arith
module by adopting some method to run in polynomial time instead.

Peer Review ID: 68506861 enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68506861 — enter this when you fill out your peer evaluation via gradescope

Page 11

