Question assigned to the following page: 2

Peer Review ID: 310890109 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-1

We introduce one rule for concatenation that first applies e; and then applies es:

e1 matches s leaving s° ez matches s’ leaving s”

 e1e2 matches s leaving s”

We introduce two rules for or, one for each choice of expression to match with:

e; matches s leaving s’

F e1]ea matches s leaving s’

and: )
€2 matches s leaving s’

F e1]ea matches s leaving s’

We introduce two rules for ex. First, we allow for zero applications of e:

- e x matches s leaving s

Next, we inductively allow multiple applications of ex:

ex matches s leaving s’ e matches s’ leaving s”

F ex matches s leaving s”

Peer Review ID: 310890109 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 3

Peer Review ID: 310890109 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-2

| believe that this task cannot be accomplished in the current framework. Consider the concatenation ejes. In
order to determine the set that ejes leaves after matching s, we must apply es to every item in the set that e;
leaves. However, it doesn’'t seem possible to express this without putting a derivation inside of a set constructor.
One attempt at expressing concatenation is the following rule that simply avoids e5:

F e; matches s leaving S

- e1eo matches s leaving S

However, this is unsound as the regular expression ab now matches the string a. Next, we could consider applying
both e; and e3 to only S, and taking the intersection:

F e1 matches s leaving S+ e; matches s leaving S

- e1es matches s leaving S

But this rule is both unsound and incomplete. The regular expression ab fails to match the string ab. And the string
ab is erroneously matched by the regular expression aa.

Peer Review ID: 310890109 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 4

Peer Review ID: 310890109 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-3

This problem is decideable. We say that a regular expression e "accepts” s if e matches s leaving the empty string.
Note that e; ~ ey iff they accept the same set of strings. It's well-known that regular expressions are equivalent to
deterministic finite automata (DFA), and so determining if e; ~ ey is equivalent to determining if two DFAs accept
the same set of strings. It is a classic result that this can be done with a “pairwise state reachability” strategy if the

DFAs are viewed as edge-labelled graphs.

4

Peer Review ID: 310890109 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 5

Peer Review ID: 310890109 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-4

The last two testcases take a long time to calculate because they contain clauses that are essentially of the form
x > 0. When faced with such a testcase, the given arithmetic theory solver must iterate all possibilities for = from
—128 all the way up until it finds a satisfying assignment at 1. Indeed, the worstcase runtime of our arithmetic solver
is O(256™) where n is the number of variables. If we are willing to relax conditions to allow for rational solutions
(e.g., z > 3&& z < 4 becomes satisfiable with = 3.5), this module could be replaced with simplex, drastically
decreasing the runtime.

The current DPLL module could be integrated more efficiently with the theory module by creating some kind of
SetTrue functionality as in “DPLL(T): Fast Decision Procedures” by Ganzinger et al. In this way, the DPLL module
could prune arithmetically infeasible branches early instead of fully exploring them and having them refuted only at
the leaves of the search tree. However, upon closer examination of the slow cases, there is none to little backtracking
done by the DPLL module, so this would yield little improvement, if any.

The only egregious defect in the provided code | can think of is the very limited range allowed for variables. e.g.,
x > 200 is unsatisfiable.

Peer Review ID: 310890109 — enter this when you fill out your peer evaluation via gradescope



