Question assigned to the following page: 2

Peer Review ID: 311035788 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-1. Regular Expression, Large-Step [10 points]. Regular Expressions
are commonly used as abstractions for string matching. Here is an abstract grammar for
regular expressions:

e = "% singleton — matches the character <
| empty skip — matches the empty string
| el e concatenation — matches e; followed by ez
| e e or — matches e; or es
| ex Kleene star — matches 0 or more occurrence of e

. matches any single character
["x” —”y”] matches any character between X and y inclusive

| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The last four
cases can be defined in terms of the first five. We also give an abstract grammar for strings
(modeled as lists of characters):

s == nil empty string

| o) 4

x” s string with first character X and other characters s

D P

We write "bye” as shorthand for "b” :: ”y” :: ”e” :: nil. This exercise requires you to give
large-step operational semantics rules of inference related to regular expressions matching
strings. We introduce a judgment:

e matches s leaving s

The interpretation of the judgment is that the regular expression e matches some prefix of
the string s, leaving the suffix s’ unmatched. If ' = nil then r matched s exactly. Examples:

F ”h”(”e”+) matches "hello” leaving "110”

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

F ("n” | 7€”)* matches "hello” leaving “ello”
F ("n” | ”7€”)* matches "hello” leaving “hello”
F ("n” | 7€”)* matches "hello” leaving ”110”

Here are two rules of inference:

s="%x" ¢

F”x” matches s leaving s F empty matches s leaving s

Give large-step operational semantics rules of inference for the other three primal regular
expressions. Solution:

e1 matches s leaving s; e; matches s; leaving s
F eje; matches s leaving s,

2

Peer Review ID: 311035788 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 3 and 2

Peer Review ID: 311035788 — enter this when you fill out your peer evaluation via gradescope

e1 matches s leaving s’
F e; | eo matches s leaving s’

es matches s leaving s’
F e1 | e2 matches s leaving s’

F e * matches s leaving s

e matches s leaving s; e matches s; leaving s,
F e x matches s leaving s

Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F ”x” matches s leaving {s' | s ="x" :: §'} F empty matches s leaving {s}

F e; matches s leaving S+ e, matches s leaving S’
F e1 | ea matches s leaving S U S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and ejes. You may not place
a derivation inside a set constructor, as in: {x | Jy. F e matches x leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong”’ rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.
Solution: This can not be done correctly in the given framework. In our operational
semantics, the suffix of strings can be viewed as states. I think the process of converting
nondeterministic derivation rules to deterministic ones would be similar in spirit to the
conversion from NFA to DFA. The deterministic states would be subset of states (strings).
The given judgment should be updated to - e matches S leaving S’, where S and S’ are sets

3

Peer Review ID: 311035788 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 3 and 4

Peer Review ID: 311035788 — enter this when you fill out your peer evaluation via gradescope

of strings. The current framework is likely incomplete since the given judgment effectively
matches only singleton sets {s}.
My attempt for the rule of eje, is:

F eq matches s leaving {s1} F ex matches s; leaving S
F ejey matches s leaving S’

Since the set of hypotheses have to be fixed, I cannot write the following as hypotheses of

the rule.
F e; matches s leaving S’

F ey matches s; leaving S, Vs; € S
My attempt for the rule of ex is:

F e+ matches ”” leaving {"”}

F e matches s leaving {s;} F e* matches s; leaving S’

F e * matches s leaving S’

The rules are incomplete since they restrict the first hypothesis to leave with singleton
sets.

Exercise 3F-3. Equivalence [7 points]. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ c iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ey iff Vs € S. F e; matches s leaving S; A F ey matches s leaving Sy —>
S1 = S, (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ es is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

Solution: The problem is decidable. Given ey, e5, use the Thompson’s Construction to
derive the DFAs D; and D, that accepts e; and ey, respectively. Construct a new DFA D
that accepts the difference of £(D;) and £(Ds). This DFA D can be constructed by taking
the product of D; and Ds. The accepting states for D are the product states (s, s3) such
that exactly one of sq,s9 is originally an accepting state of Dy or Ds. Finally, check the
emptiness of the language £(D) accepted by D. The language £(D) is empty if and only if
the accepting states of D are not reachable. If £(D) is empty, we have e; ~ ey; otherwise
we have e; ¢ es.

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use

information from the assigned reading or related papers, not just from the lecture slides. I

4

Peer Review ID: 311035788 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 311035788 — enter this when you fill out your peer evaluation via gradescope

(base) yun-rongluo@Yun-Rongs-MacBook-Air-2 gradpl-hw-3 % cat tests/test-35.input
(x >y) &

(y > 2) &

(z = 10) &

(x < 12)

(base) yun-rongluo@Yun-Rongs-MacBook-Air-2 gradpl-hw-3 % ./solver < tests/test-35.input

Expression:
() >= () && (1((x) = (y)))) & (((y) >= (2)) & (1((y) = (2))))) & ((2) = (10))) & (((x) <= (12)) & (1((x) = (12))))

CNF:

)
) & (10 || 6] 1|51 2]]!4]l3

Unsatisfiable!

Figure 1: test-35

(base) yun-rongluo@Yun-Rongs-MacBook-Air-2 gradpl-hw-3 % cat tests/test-36.input
(x >y) &

(y > 2) &

(z = 10) &&

(x < 13)

(base) yun-rongluo@Yun-Rongs-MacBook-Air-2 gradpl-hw-3 % ./solver < tests/test-36.input

Expression:
() >= () && (1((x) = (y)))) & (((y) >= (2)) & (1((y) = (2))))) & ((2) = (10))) & (((x) <= (13)) & (1((x) = (13))))

(x) = (13)

solver: (_0) & (!_1) & (_2) && (!_3) & (_4) && (_5) && (!_6)

Satisfiable!

Figure 2: test-35

am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

Solution: The runtime bottleneck of DPLL(T) for these two cases lies in the theory
solver. These two cases contain three variables that involve equalities and inequalities.
DPLL(T) first performs propositional abstraction and encode 7 atoms of (in)equalities into
7 propositional variables as shown in the figures. A SAT solver then solves the propositional
CNF abstraction for the given theory clauses. Since there are only 7 propositional variables,
the simple DPLL SAT solver can handle it very efficiently. The arithmetic theory solver will
check whether an abstract model returned by DPLL SAT solver is consistent to a concrete
theory model. The arithmetic theory solver in this implementation simply enumerates all
possible values from -127 to 128 for each variable, evaluates the values for the 7 atoms, and
checks if the values are consistent with the abstract model. This step is the most time-
consuming part. I would rewrite this part to improve performance. Whenever the value is
decided for a variable, the theory solver should propagate the value in the theory clauses,
and derive upper-bounds or lower-bounds for other undecided variables.

Peer Review ID: 311035788 enter this when you fill out your peer evaluation via gradescope

