13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68549283 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 3F-1. Regular Expression, Large-Step [10 points]. Regular Expressions
are commonly used as abstractions for string matching. Here is an abstract grammar for
regular expressions:

e == "%" singleton — matches the character X
| empty skip — matches the empty string
| e e concatenation — matches e; followed by es
| e] e or — matches e; or es
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

| [’x” —”y”] matches any character between X and y inclusive
| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

Give large-step operational semantics rules of inference for the other three primal regular

expressions.
el matches s leaving s’ e2 matches s’ leaving s” el matches s leaving s
el e2 matches s leaving s” F el | e2 matches s leaving '
e2 matches s leaving s e matches s leaving s
el | e2 matches s leaving s I ex matches s leaving s
e matches s leaving s’ ex matches s’ leaving s”

F ex matches s leaving s”

Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F ”x” matches s leaving {s' | s ="x" :: §'} - empty matches s leaving {s}

Peer Review ID: 68549283 — enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68549283 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 3F-1. Regular Expression, Large-Step [10 points]. Regular Expressions
are commonly used as abstractions for string matching. Here is an abstract grammar for
regular expressions:

e == "%" singleton — matches the character X
| empty skip — matches the empty string
| e e concatenation — matches e; followed by es
| e] e or — matches e; or es
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

| [’x” —”y”] matches any character between X and y inclusive
| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

Give large-step operational semantics rules of inference for the other three primal regular

expressions.
el matches s leaving s’ e2 matches s’ leaving s” el matches s leaving s
el e2 matches s leaving s” F el | e2 matches s leaving '
e2 matches s leaving s e matches s leaving s
el | e2 matches s leaving s I ex matches s leaving s
e matches s leaving s’ ex matches s’ leaving s”

F ex matches s leaving s”

Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F ”x” matches s leaving {s' | s ="x" :: §'} - empty matches s leaving {s}

Peer Review ID: 68549283 — enter this when you fill out your peer evaluation via gradescope

F e; matches s leaving S F e; matches s leaving S’
ey | ea matches s leaving SU S’

Creating operational semantics for ex and e; es is not possible in this framework, as the rules
created would be incomplete.

e matches s leaving S el matches s leaving S1
F e x matches s leaving S F el e2 matches s leaving S1

These two rules are incomplete because for the rules to be complete, another regular
expression must be applied to all elements in S (either e again for ex or €2 in el €2), but to
perform this operation a derivation would need to be included in the set constructor which
is not allowed in this framework.

Exercise 3F-3. Equivalence [7 points|. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecidable: ¢ ~ c iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ey iff Vs € S. F e; matches s leaving S; A F ey matches s leaving Sy —>
S1 = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

e1 ~ eg is undecidable. To prove this, I will reduce regular expression similarity to the
halting problem.
Assume a solver exists for regular expression similarity sim(el,e2) that returns True if
el ~ e2 and False otherwise. Given Sim, the following program can be constructed, which
accepts another program as input and returns whether the input program halts.

def ImpToRegex(c,count):
match (c¢) with

| While(b, e) —> ImpToRegex(e, count) + "+ || 7 + ImpToRegex(e, cot
| If(b, el, e2) >
(ImpToRegex(el, count) + 7 || 7 + (ImpToRegex(e2, count))

| Seq(el, e2) —>
let s1 = ImpToRegex(el, count) in
let s2 = ImpToRegex(e2, count + 1) in
sl +7 7 4+ s2

| Assigment(x, n)

| Skip —> count;

def decideHalt (program)

let program_str = ImpToRegex(program, ”0”)
return sim(program._str, “ax”)

Peer Review ID: 68549283 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68549283 — enter this when you fill out your peer evaluation via gradescope

Page 8

F e; matches s leaving S F e; matches s leaving S’
ey | ea matches s leaving SU S’

Creating operational semantics for ex and e; es is not possible in this framework, as the rules
created would be incomplete.

e matches s leaving S el matches s leaving S1
F e x matches s leaving S F el e2 matches s leaving S1

These two rules are incomplete because for the rules to be complete, another regular
expression must be applied to all elements in S (either e again for ex or €2 in el €2), but to
perform this operation a derivation would need to be included in the set constructor which
is not allowed in this framework.

Exercise 3F-3. Equivalence [7 points|. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecidable: ¢ ~ c iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ey iff Vs € S. F e; matches s leaving S; A F ey matches s leaving Sy —>
S1 = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

e1 ~ eg is undecidable. To prove this, I will reduce regular expression similarity to the
halting problem.
Assume a solver exists for regular expression similarity sim(el,e2) that returns True if
el ~ e2 and False otherwise. Given Sim, the following program can be constructed, which
accepts another program as input and returns whether the input program halts.

def ImpToRegex(c,count):
match (c¢) with

| While(b, e) —> ImpToRegex(e, count) + "+ || 7 + ImpToRegex(e, cot
| If(b, el, e2) >
(ImpToRegex(el, count) + 7 || 7 + (ImpToRegex(e2, count))

| Seq(el, e2) —>
let s1 = ImpToRegex(el, count) in
let s2 = ImpToRegex(e2, count + 1) in
sl +7 7 4+ s2

| Assigment(x, n)

| Skip —> count;

def decideHalt (program)

let program_str = ImpToRegex(program, ”0”)
return sim(program._str, “ax”)

Peer Review ID: 68549283 — enter this when you fill out your peer evaluation via gradescope

If such a decidable algorithm as sim exists, then the halting problem can be decided by
the above algorithm. If the converted regular expression string from the program is similar
to the program string ”a*”, which matches all strings, then the program trace includes an
infinite number of matches and does not halt.

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

The included test cases take comparatively long because the arithmetic solver for the
clauses runs comparatively slowly for these tests. In both tests, for satisfiability all four
clauses need to be true. The DPLL solver runs relatively fast, since it is simple to find that
all singleton clauses need to be true when connected by an ”and” operation. The greater
time complexity comes from finding variables assignments that satisfy all four arithmetic
clauses. The Arith module includes the arith function, which is used to find satisfying vari-
able value assignments for the constraints. Both of these test cases require that x > y and y
> 7. As the arithmetic solver as given, values for x and y are set to the lower bound (-127)
and then all values of z are tried. None of these candidate values for z will work with the
current x and y values, since x =y, but each will be tried by the solver. After none of the z
mappings work, increasing new values for y will be tried through the upper bound. However,
none of these will work since x is the lowest value and there is a constraint of x > y. This
time wasting with invalid assignments will also happen with the y > z constraint, since the
arithmetic solver works by trying the lowest value first, and tries values for x, y and z in
that order. I would make two key changes to module: scan the constraints for any equal-
ity relationships with constants before trying assignments, and check the model after each
variable assignment, not once every variable has been assigned. The first recommendation
would greatly reduce the search space if any variables must be set to a certain constant (ie
x = 10), as it allows x to be taken as a constant in the model rather than searching through
all possible values. The second recommendation will prune impossible routes early, rather
than trying all assignments. This will solve the problem of time wasting in test cases 35 and
36, as the relationship between x and y can be found earlier, before any values of z are tried
with any already invalid x and y values.

Bonus Point: An incredibly egregious defect in the original code is that the arithmetic
solver does not the model against the constraints until all variables have been set. This
results in redundant checks of models where the invalidating variables are not changed. For
example, in Test 35, the mappings [x: -127, y:-127] are compared for all possible values of z,
even though the mappings of [x: -127, y: -127] will never satisfy the constraints regardless
of the value of z given the constraint that x > y.

Peer Review ID: 68549283 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68549283 — enter this when you fill out your peer evaluation via gradescope

Page 11

If such a decidable algorithm as sim exists, then the halting problem can be decided by
the above algorithm. If the converted regular expression string from the program is similar
to the program string ”a*”, which matches all strings, then the program trace includes an
infinite number of matches and does not halt.

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

The included test cases take comparatively long because the arithmetic solver for the
clauses runs comparatively slowly for these tests. In both tests, for satisfiability all four
clauses need to be true. The DPLL solver runs relatively fast, since it is simple to find that
all singleton clauses need to be true when connected by an ”and” operation. The greater
time complexity comes from finding variables assignments that satisfy all four arithmetic
clauses. The Arith module includes the arith function, which is used to find satisfying vari-
able value assignments for the constraints. Both of these test cases require that x > y and y
> 7. As the arithmetic solver as given, values for x and y are set to the lower bound (-127)
and then all values of z are tried. None of these candidate values for z will work with the
current x and y values, since x =y, but each will be tried by the solver. After none of the z
mappings work, increasing new values for y will be tried through the upper bound. However,
none of these will work since x is the lowest value and there is a constraint of x > y. This
time wasting with invalid assignments will also happen with the y > z constraint, since the
arithmetic solver works by trying the lowest value first, and tries values for x, y and z in
that order. I would make two key changes to module: scan the constraints for any equal-
ity relationships with constants before trying assignments, and check the model after each
variable assignment, not once every variable has been assigned. The first recommendation
would greatly reduce the search space if any variables must be set to a certain constant (ie
x = 10), as it allows x to be taken as a constant in the model rather than searching through
all possible values. The second recommendation will prune impossible routes early, rather
than trying all assignments. This will solve the problem of time wasting in test cases 35 and
36, as the relationship between x and y can be found earlier, before any values of z are tried
with any already invalid x and y values.

Bonus Point: An incredibly egregious defect in the original code is that the arithmetic
solver does not the model against the constraints until all variables have been set. This
results in redundant checks of models where the invalidating variables are not changed. For
example, in Test 35, the mappings [x: -127, y:-127] are compared for all possible values of z,
even though the mappings of [x: -127, y: -127] will never satisfy the constraints regardless
of the value of z given the constraint that x > y.

Peer Review ID: 68549283 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68549283 — enter this when you fill out your peer evaluation via gradescope

Page 13

