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Exercise 3F-1. Regular Expression, Large-Step

non

e = "x
| empty
| € e
| e e
| e
I [ux" _ "yn]
| e+
| e?
s = nil|"x" ::s
RE-CONCATENATION RE-Or1
s matches e; leaving s; I s; matches e, leaving s s matches e; leaving s
s matches e, e, leaving s’ s matches e | e; leaving s
RE-ORr2 RE-EKLEENE RE-NEKLEENE
I s matches e, leaving s’ I s matches ee* leaving s
b s matches e | e; leaving s s matches e* leaving s s matches e* leaving s

Exercise 3F-2. Regular Expressions and Sets

I don’t believe that it’s possible to give a fully deterministic set of rules in the given system that captures the full
set of possible matches. In DRE-NEConcat below we only match for a single s; in S therefore getting a subset of the
potential matches; we cannot do it for all in S as it may be infinite and we may not have infinitely many hypothesis
in our rule. DRE-Kleene on the other hand is unsound as the rule is recursive and there is no terminal case which
would cause the derivations to have infinite length.

DRE-NECoNCAT DRE-KLEENE
s matches e; leaving S Js; € S. b s; matches e, leaving S’ s matches ee” leaving S
ks matches e; e, leaving S’ s matches e* leaving {s}uS

Exercise 3F-3. Equivalence

To show the decidability of the equivalence relation, we must note that it is an equivalent problem to show that their
languages are equivalent—this is clear by considering that the equivalence relation is a match on all prefixes of s € S.
Regular expressions define regular languages and can therefore be defined by DFAs; DFAs can also be minimized and
it can be shown that all equivalent DFAs have an isomorphic minimum representation. Therefore if we minimize
both regular expression’s DFAs we can check that they are isomorphic by going over all the states and transitions
in both automata the desired equivalence relation can be shown.

Exercise 3F-4. SAT Solving

The last two examples are especially slow because of our naive integer constraint solving algorithm. Inputs 35
and 36 only go through DPLL one time with boolean assignments assigned for the arithmetic expressions so the
constraint solver is taking the vast majority of the time by just trying the full search space of small ints restricting
only to a given upper and lower bounds on variables. Worst case performance for DPLL/SAT solving it self is O(2")
but as noted before the boolean satisfiability is not our main issue in these examples. For inputs 35 and 36 we
have 3 integer variables that have to fully enumerate their state spaces to prove satisfiability and unsatisfiability.
For 36 specifically only the combination z=10;y=11;x=12 satisfies the formula so arith.ml tests 256> possible test
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cases. The situation is similar for 35 except that there are NO satisfying solutions so the algorithm definitely tries all
combinations. In general this means for an unsatisfiable expression the arithmetic constraint solving is 256" so worst
case is O(256"™) where n is the number of arithmetic variables. The main defect in the arithmetic constraint solving is
that it’s just brute forcing the state space; this can be addressed in multiple ways: when a constraint is added into our
current context we should bound the choice for all other variables to satisfy the given constraints—this is essentially
making the arithmetic choose operator lazy the same way that DPLL(T) does. Another improvement similar to uniq
propagation would be to take all unit arithmetic expressions in the conjunction and use them to bound variables,
for input 35 that would immediately bind z = 10; x < 12 cutting down on the overall search space significantly. In
addition I imagine there are several other heuristics that could be applied to improve speed such as specializing the
order in which variables are chosen.

The last two examples are especially slow due to our naive integer constraint-solving algorithm. Inputs 35 and 36
only require one DPLL pass with boolean assignments for the arithmetic expressions. However, the constraint solver
dominates the runtime by exhaustively searching the small integer space within the given variable bounds.

While the worst-case performance for DPLL/SAT solving is O(2"), the primary bottleneck here is the arithmetic
solver. For inputs 35 and 36, three integer variables must fully enumerate their state spaces to determine satisfiabil-
ity. Specifically, input 36 has only one satisfying assignment (z=10;y=11;x=12), requiring the solver to check 256
possibilities. Input 35 is unsatisfiable, forcing the solver to explore all combinations. In general, for n arithmetic
variables, the worst-case complexity of the arithmetic solver is O(256™).

The core issue is that the solver relies on brute-force enumeration. Several optimizations could address this ineffi-
ciency. First, when a new constraint is added, we could dynamically restrict the domains of other variables—akin to
how DPLL(T) handles theory propagation. Second, similar to unit propagation, we could use unit arithmetic con-
straints to immediately refine variable bounds. For instance, in input 35, this would immediately set z = 10 and
x < 12, drastically reducing the search space. Other heuristics, such as optimizing the variable selection order, could
further improve performance.
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