No questions assigned to the following page.

Peer Review ID: 306712878 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-1. Regular Expression, Large-Step [10 points]. Regular Expressions
are commonly used as abstractions for string matching. Here is an abstract grammar for
regular expressions:

e == "x" singleton — matches the character <
| empty skip — matches the empty string
| e1 e concatenation — matches e; followed by e
| e ]es or — matches e; or ey
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

| [’x” —7y”] matches any character between X and y inclusive
| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The last four
cases can be defined in terms of the first five. We also give an abstract grammar for strings
(modeled as lists of characters):

s == nil empty string
| 7x” s string with first character X and other characters s

We write "bye” as shorthand for ”b” :: ”y” :: ”e” :: nil. This exercise requires you to give

large-step operational semantics rules of inference related to regular expressions matching

strings. We introduce a judgment:

F e matches s leaving s’

The interpretation of the judgment is that the regular expression e matches some prefix of
the string s, leaving the suffix s’ unmatched. If 8" = nil then r matched s exactly. Examples:

F ”h”(”e”+) matches "hello” leaving "110”

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

F ("h” | ”e”)x matches "hello” leaving "ello”
F ("n” | ”e”)* matches "hello” leaving “hello”
F ("n” | ”e”)* matches "hello” leaving ”110”
Here are two rules of inference:
s="x" ¢
F 7x” matches s leaving s F empty matches s leaving s

Give large-step operational semantics rules of inference for the other three primal regular
expressions.

Peer Review ID: 306712878 — enter this when you fill out your peer evaluation via gradescope



Questions assigned to the following page: 2 and 3

Peer Review ID: 306712878 — enter this when you fill out your peer evaluation via gradescope



Answer

F e; matches s leaving s” F e, matches s” leaving s F e; matches s leaving s’
F e; e, matches s leaving &' F ey | e; matches s leaving s’

F e, matches s leaving s
ey | e; matches s leaving s’ F ex matches s leaving s

F e matches s leaving s” F ex matches s” leaving s’
F ex matches s leaving s

Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F 7x” matches s leaving {s' | s ="x" :: &'} F empty matches s leaving {s}

F e; matches s leaving S+ ey matches s leaving S’
F e;1 | ea matches s leaving SU S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and eje;. You may not place
a derivation inside a set constructor, as in: {z | Jy. F e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.
Answer It cannot be done correctly in the given framwork. For example, we try to write

the rules of ejes. The correct one should be

F e; matches s leaving S; Vs’ € S1,F es matches s’ leaving S

F e; e; matches s leaving U Sy
s'eSt

Peer Review ID: 306712878 — enter this when you fill out your peer evaluation via gradescope



Questions assigned to the following page: 4 and 3

Peer Review ID: 306712878 — enter this when you fill out your peer evaluation via gradescope



but this rule is not allowed because its second “premise” is not a fixed finite list of hypotheses.
It “unrolls” to one hypothesis for each s’ € Sj.
We use ex for another example, the correct one should be

F e matches s leaving S; Vs’ € Si,F ey matches s’ leaving Sy

F ex matches s leaving {s} U U So

s'eS

which again is not permitted because the number of premises depends on the (arbitrary)
size of Sj.

Exercise 3F-3. Equivalence [7 points|. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ c iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ey iff Vs € S. F e; matches s leaving S; A F e, matches s leaving S, —
S1 =Sy (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ es is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

Answer e ~ ey is undecideable. Let’s treat pair (ej,e2) as an input of program s. e; es
are regular expressions and program s will only halt if S; (the remainder of applying e; to a
string) and Sy (the remainder of applying e, to the same string) are the same. Then, e; ~ eg
iff program s will halt for all strings. However, accroding to the halting problem, we know
it is impossible. So, e; ~ e5 is undecideable.

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given DPLL-style
CNF SAT solver with the given theory of bounded arithmetic. In particular, you must
update only the Main.solve function. Your updated solver must be correct. This notably
implies that it must correctly handle all of the included test cases — we use diff for some
testing, but if you change only the listed method you should end up with the same answers
as the reference.

In addition, create an example “tricky” input that can be parsed by our test harness.

Submit your .ml and .input files.

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. 1
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

4

Peer Review ID: 306712878 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 5

Peer Review ID: 306712878 — enter this when you fill out your peer evaluation via gradescope



Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

Answer The tests run slowly because the arithmetic solver uses an exhaustive search over
a large bounded domain, and the integration with the SAT solver does little to prune the
search space until after a full Boolean model is produced. For unsatisfiable cases, the solver
may examine nearly the entire search space; for satisfiable cases, many candidates may be
tried before the right one is found.

The arith.ml module is the most critical for performance improvements. Rewriting it to
use constraint propagation techniques, interval reasoning, and incremental conflict analysis
(instead of brute-force enumeration) would yield the most benefit.

The coarse conflict clause learning, where the conflict clause simply negates all theory literals
in the current Boolean model, is a significant defect. It over-prunes the search space and
forces repeated, inefficient re-computation. A more precise conflict explanation mechanism
should be implemented.

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

Peer Review ID: 306712878 — enter this when you fill out your peer evaluation via gradescope



