13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68559038 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 3F-2. Regular Expression, Large-Step [10 points].

Rule for ejes

- e; matches s; @Q s, @ s” leaving s5 @ s” | e; matches sy @ s” leaving s”

F eies matches s; @ s, @ s” leaving &'

(where @ is the string concatenation operator.)

Rules for e; | ey

F e; matches s; @ s’ leaving ' - e; matches sy @ s’ leaving s’
Fe1 | e; matches s; @ s’ leaving s Fe1 | eo matches s, @ §' leaving s’

Rules for ex

F e(ex) matches s leaving s
F e * matches s leaving s F e x matches s leaving s’

(One case for matching zero times, another for matching 1+ times)

Exercise 3F-3. Regular Expression and Sets [5 points]. You must do one of the
following;:

e cither give operational semantics rules of inference for ex and e;e,. You may not place
a derivation inside a set constructor, as in: {x | Jy. F e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

I believe that our current framework does not support this “exhaustive” regular expression
construct, as there isn’t a way to express how to carry forward the resulting set of one regular
expression to another without putting regular expressions in the set constructor.

My first attempt at ejes:

se{sy@Qd|s, Qs €S}
F e; matches s leaving S F e, matches s leaving S’
| e1es matches s leaving S’

However, this doesn’t produce the whole set, as S’ can only tell you something about
suffices for a particular s € S produced by e;. Therefore, this is not sound.

2

Peer Review ID: 68559038 — enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68559038 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 3F-2. Regular Expression, Large-Step [10 points].

Rule for ejes

- e; matches s; @Q s, @ s” leaving s5 @ s” | e; matches sy @ s” leaving s”

F eies matches s; @ s, @ s” leaving &'

(where @ is the string concatenation operator.)

Rules for e; | ey

F e; matches s; @ s’ leaving ' - e; matches sy @ s’ leaving s’
Fe1 | e; matches s; @ s’ leaving s Fe1 | eo matches s, @ §' leaving s’

Rules for ex

F e(ex) matches s leaving s
F e * matches s leaving s F e x matches s leaving s’

(One case for matching zero times, another for matching 1+ times)

Exercise 3F-3. Regular Expression and Sets [5 points]. You must do one of the
following;:

e cither give operational semantics rules of inference for ex and e;e,. You may not place
a derivation inside a set constructor, as in: {x | Jy. F e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

I believe that our current framework does not support this “exhaustive” regular expression
construct, as there isn’t a way to express how to carry forward the resulting set of one regular
expression to another without putting regular expressions in the set constructor.

My first attempt at ejes:

se{sy@Qd|s, Qs €S}
F e; matches s leaving S F e, matches s leaving S’
| e1es matches s leaving S’

However, this doesn’t produce the whole set, as S’ can only tell you something about
suffices for a particular s € S produced by e;. Therefore, this is not sound.

2

Peer Review ID: 68559038 — enter this when you fill out your peer evaluation via gradescope

Another attempt:

 e1 matches s leaving S+ e matches s leaving {s'|s2 @ §' € S}

- e1eo matches s leaving {s'|se @ s' € S}

In this case, I tried express the fact that es must happen only after e;, but somehow I
feel it’s a bit circular, since in order to know es’s output, you need to somehow know what
it does with s after e; through some other means.

Exercise 3F-4. Equivalence [7 points]. I believe that equivalence is undecidable in our
implementation of regular expressions. The reason is that not all regular expressions will
terminate. Take for example the regular expression ("a"*)*, which matches zero or more
instances of (zero or more instances of the character “a”). Assuming my semantics for the
Kleene star (3F-2) are correct, this regular expression may become stuck, since matching it
on the string "a" can cause it to match zero times, infinitely many times. It is possible to
have the “inner” Kleene star not make any “progress” on the string such that. Therefore,
given an arbitrary number of runs of the “outer” Kleene star, you can always add one more
run that either matches or doesn’t match. Although it’s probably apparent that the resulting
set of matches is {(), "a"}, a truly “exhaustive” search would never terminate due to the
“add-one-more loop” situation described previously—what if the next loop makes it behave
differently? It won’t, but what if? And if not, what if we add another star?

Therefore, since we cannot guarantee that all regular expressions in our implementation
terminate, equivalence is undecidable since it reduces to the halting problem.

Exercise 3F-5. SAT Solving [6 points]. The last two tests took a long time because
have arithmetic constraints involving more than two variables. An example could be:

x =y & x =2z && z = 128

This is because the arithmetic theory prover uses “brute force” to test relations between
variables, so the time to solve is potentially exponential in the number of variables.

The module I would rewrite first would be the arithmetic solver, namely the portion that
performs the bounded search. The way it’s implemented seems a lot like plain DPLL where
the numbers are all treated as 8-bit collections of booleans—there isn’t any acknowledgment
of their higher-level properties. I believe a more efficient approach would be to implement
some kind of “symbolic execution” for integers i.e. basic algebra substitution methods. The
key would be to apply some of the algebraic “intuition” we humans use when solving simple
algebra equations. For instance, even if I expand the above equation to a hundred variables
all equalling x, most people could very quickly guess that the equation is still satisfiable.
One approach could be to find the variable with concrete constraints, or those with the most
constraints, and try to express other variables in terms of this one. We would need to write
a set of inference rules to capture the algebraic relationships between integers, and use those
to possibly infer the values (or at least the valid intervals) of variables. This is starting to
sound a bit like refinement type inference...

3

Peer Review ID: 68559038 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68559038 — enter this when you fill out your peer evaluation via gradescope

Page 8

Another attempt:

 e1 matches s leaving S+ e matches s leaving {s'|s2 @ §' € S}

- e1eo matches s leaving {s'|se @ s' € S}

In this case, I tried express the fact that es must happen only after e;, but somehow I
feel it’s a bit circular, since in order to know es’s output, you need to somehow know what
it does with s after e; through some other means.

Exercise 3F-4. Equivalence [7 points]. I believe that equivalence is undecidable in our
implementation of regular expressions. The reason is that not all regular expressions will
terminate. Take for example the regular expression ("a"*)*, which matches zero or more
instances of (zero or more instances of the character “a”). Assuming my semantics for the
Kleene star (3F-2) are correct, this regular expression may become stuck, since matching it
on the string "a" can cause it to match zero times, infinitely many times. It is possible to
have the “inner” Kleene star not make any “progress” on the string such that. Therefore,
given an arbitrary number of runs of the “outer” Kleene star, you can always add one more
run that either matches or doesn’t match. Although it’s probably apparent that the resulting
set of matches is {(), "a"}, a truly “exhaustive” search would never terminate due to the
“add-one-more loop” situation described previously—what if the next loop makes it behave
differently? It won’t, but what if? And if not, what if we add another star?

Therefore, since we cannot guarantee that all regular expressions in our implementation
terminate, equivalence is undecidable since it reduces to the halting problem.

Exercise 3F-5. SAT Solving [6 points]. The last two tests took a long time because
have arithmetic constraints involving more than two variables. An example could be:

x =y & x =2z && z = 128

This is because the arithmetic theory prover uses “brute force” to test relations between
variables, so the time to solve is potentially exponential in the number of variables.

The module I would rewrite first would be the arithmetic solver, namely the portion that
performs the bounded search. The way it’s implemented seems a lot like plain DPLL where
the numbers are all treated as 8-bit collections of booleans—there isn’t any acknowledgment
of their higher-level properties. I believe a more efficient approach would be to implement
some kind of “symbolic execution” for integers i.e. basic algebra substitution methods. The
key would be to apply some of the algebraic “intuition” we humans use when solving simple
algebra equations. For instance, even if I expand the above equation to a hundred variables
all equalling x, most people could very quickly guess that the equation is still satisfiable.
One approach could be to find the variable with concrete constraints, or those with the most
constraints, and try to express other variables in terms of this one. We would need to write
a set of inference rules to capture the algebraic relationships between integers, and use those
to possibly infer the values (or at least the valid intervals) of variables. This is starting to
sound a bit like refinement type inference...

3

Peer Review ID: 68559038 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68559038 — enter this when you fill out your peer evaluation via gradescope

Page 10

Another attempt:

 e1 matches s leaving S+ e matches s leaving {s'|s2 @ §' € S}

- e1eo matches s leaving {s'|se @ s' € S}

In this case, I tried express the fact that es must happen only after e;, but somehow I
feel it’s a bit circular, since in order to know es’s output, you need to somehow know what
it does with s after e; through some other means.

Exercise 3F-4. Equivalence [7 points]. I believe that equivalence is undecidable in our
implementation of regular expressions. The reason is that not all regular expressions will
terminate. Take for example the regular expression ("a"*)*, which matches zero or more
instances of (zero or more instances of the character “a”). Assuming my semantics for the
Kleene star (3F-2) are correct, this regular expression may become stuck, since matching it
on the string "a" can cause it to match zero times, infinitely many times. It is possible to
have the “inner” Kleene star not make any “progress” on the string such that. Therefore,
given an arbitrary number of runs of the “outer” Kleene star, you can always add one more
run that either matches or doesn’t match. Although it’s probably apparent that the resulting
set of matches is {(), "a"}, a truly “exhaustive” search would never terminate due to the
“add-one-more loop” situation described previously—what if the next loop makes it behave
differently? It won’t, but what if? And if not, what if we add another star?

Therefore, since we cannot guarantee that all regular expressions in our implementation
terminate, equivalence is undecidable since it reduces to the halting problem.

Exercise 3F-5. SAT Solving [6 points]. The last two tests took a long time because
have arithmetic constraints involving more than two variables. An example could be:

x =y & x =2z && z = 128

This is because the arithmetic theory prover uses “brute force” to test relations between
variables, so the time to solve is potentially exponential in the number of variables.

The module I would rewrite first would be the arithmetic solver, namely the portion that
performs the bounded search. The way it’s implemented seems a lot like plain DPLL where
the numbers are all treated as 8-bit collections of booleans—there isn’t any acknowledgment
of their higher-level properties. I believe a more efficient approach would be to implement
some kind of “symbolic execution” for integers i.e. basic algebra substitution methods. The
key would be to apply some of the algebraic “intuition” we humans use when solving simple
algebra equations. For instance, even if I expand the above equation to a hundred variables
all equalling x, most people could very quickly guess that the equation is still satisfiable.
One approach could be to find the variable with concrete constraints, or those with the most
constraints, and try to express other variables in terms of this one. We would need to write
a set of inference rules to capture the algebraic relationships between integers, and use those
to possibly infer the values (or at least the valid intervals) of variables. This is starting to
sound a bit like refinement type inference...

3

Peer Review ID: 68559038 — enter this when you fill out your peer evaluation via gradescope

One of the issues I noticed with the arithmetic theory prover is that the numbers are
limited to a very small finite subset of the integers. For instance, we would expect x = 128
&% x - y = -127 to be satisfiable (since integer subtraction is closed), but it’s not since y
would have to take on a value outside of the arithmetic solver’s bounds. This is a direct
side-effect of needing to constrain the bounds due to the brute force approach discussed
earlier.

4

Peer Review ID: 68559038 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68559038 — enter this when you fill out your peer evaluation via gradescope

Page 13

