13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68560210 — enter this when you fill out your peer evaluation via gradescope

Page 3

Answer 3F-1:
The basic idea here is to apply the command rules without the guarding boolean expres-
sion b and instead non-deterministically allow both evaluation paths:

e; matches s leaving s’ e, matches s’ leaving s”
CONCAT —
F e1es matches s leaving s
’ e1 matches s leaving s’ 5 e; matches s leaving s’
OR- : OR- :
I e1]ez matches s leaving s’ - e1]e2 matches s leaving s’
- e matches s leaving s’ e matches s leaving s”
STAR-0 - STAR - T
F e * matches s leaving s e * matches s leaving s

Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F”x” matches s leaving {s' | s ="x" 1 &'} empty matches s leaving {s}

I e; matches s leaving S e, matches s leaving S’
Fe1 | e; matches s leaving S U S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and e;e,. You may not place
a derivation inside a set constructor, as in: {x | Jy. F e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

3

Peer Review ID: 68560210 — enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68560210 — enter this when you fill out your peer evaluation via gradescope

Page 5

Answer 3F-2:

This is not possible to do. Within this framework, we don’t have a way of expressing a
well-founded inductive rule for the Kleen-star that captures the idea of “0 or more” times.
We could try something trivial like:

- ((empty|e)|(ee|ece)) matches s leaving S
STAR-SIMPLE

F e * matches s leaving S

However, this is incomplete in that it only expresses the idea of applying it 0, 1, 2, or 3
times instead of an arbitrary n times. Extending this chain infinitely is not allowed by the
instructions. We could attempt to use the usual inductive definition like:

I e matches s leaving S ses F e * matches s’ leaving S’
e x matches s leaving {s} US"US

STAR-IND

However, this doesn’t quite work because 1) unsure if we can use set operators in the
hypothesis, and 2) we need a forall quantifier. Since we can’t move this to the set constructor,
the rule is incomplete.

Exercise 3F-3. Equivalence [7 points]. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ ¢ iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ey iff Vs € S. - e; matches s leaving S; A F ey matches s leaving S —>
S; = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ es is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

Answer 3F-3
This is undecidable.

Proof. By contradiction. Assume the equivalence of e is decidable, i.e. we have a determin-
istic algorithm that can answer if e ~ e. Let ¢ € Comm be an Imp command. As given, the
equivalence of ¢ can be defined as ¢ ~ ¢ < halt(c) and is known to be undecidable. Now
consider the following reduction from c to e:

First, assume an encode function that serializes a give ¢ to a string under an invertible
scheme. Let decode be the inverse of encode. Assume the state o is reduced to the string
domain by these functions. By the operational semantics of Comm, we know ¢ must be one
of the following and each can be reduced to an e:

4

Peer Review ID: 68560210 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68560210 — enter this when you fill out your peer evaluation via gradescope

Page 7

Answer 3F-2:

This is not possible to do. Within this framework, we don’t have a way of expressing a
well-founded inductive rule for the Kleen-star that captures the idea of “0 or more” times.
We could try something trivial like:

- ((empty|e)|(ee|ece)) matches s leaving S
STAR-SIMPLE

F e * matches s leaving S

However, this is incomplete in that it only expresses the idea of applying it 0, 1, 2, or 3
times instead of an arbitrary n times. Extending this chain infinitely is not allowed by the
instructions. We could attempt to use the usual inductive definition like:

I e matches s leaving S ses F e * matches s’ leaving S’
e x matches s leaving {s} US"US

STAR-IND

However, this doesn’t quite work because 1) unsure if we can use set operators in the
hypothesis, and 2) we need a forall quantifier. Since we can’t move this to the set constructor,
the rule is incomplete.

Exercise 3F-3. Equivalence [7 points]. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ ¢ iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ey iff Vs € S. - e; matches s leaving S; A F ey matches s leaving S —>
S; = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ es is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

Answer 3F-3
This is undecidable.

Proof. By contradiction. Assume the equivalence of e is decidable, i.e. we have a determin-
istic algorithm that can answer if e ~ e. Let ¢ € Comm be an Imp command. As given, the
equivalence of ¢ can be defined as ¢ ~ ¢ < halt(c) and is known to be undecidable. Now
consider the following reduction from c to e:

First, assume an encode function that serializes a give ¢ to a string under an invertible
scheme. Let decode be the inverse of encode. Assume the state o is reduced to the string
domain by these functions. By the operational semantics of Comm, we know ¢ must be one
of the following and each can be reduced to an e:

4

Peer Review ID: 68560210 — enter this when you fill out your peer evaluation via gradescope

1. cis skip. Reduce c to empty

2. cis a seq. Reduce ¢ to concat

3. cis an ¢f. Reduce c to or

4. cis an asstgn. Perform a deterministic and decidable string replacement

5. cis a while. Reduce ¢ to kleene star

The rules apply inductively on c. For all bexp and aexp, we evaluate using the operational
semantics of Imp and update the state as necessary. The resulting set S from executing e
on an arbitrary o encoded as a string via encode(o) holds all possible final strings, each
equivalent to a state via decode. Then it holds that Js € S.{c,0) | ¢’ A decode(s) = o'. If
we know the final state for ¢ then we know if halt(c) holds, and so the equivalence of ¢ is
decidable. This gives us the contradiction. O

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given DPLL-style
CNF SAT solver with the given theory of bounded arithmetic. In particular, you must
update only the Main.solve function. Your updated solver must be correct. This notably
implies that it must correctly handle all of the included test cases — we use diff for some
testing, but if you change only the listed method you should end up with the same answers
as the reference.

In addition, create an example “tricky” input that can be parsed by our test harness.

Submit your .ml and .input files.

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

Answer 3F-4:

Test input 35 and 36 are very similar in structure: they are a chain of arithmetic ex-
pressions chained with the logical and operator. When DPLL encounters this, it will assign
meta variables to each arithmetic clause and search for a solution. Since these will all be unit
clauses, DPLL will conclude that they must all be satisfiable. DPLL then queries the theory
solver on whether or not all clauses can be satisfied at the same time. The theory solver here
is an arithmetic solver that uses bruteforce search in a bounded space. Specifically, the im-
plementation will exhaustively search the space of 3 variables with values between -127 and
128 and check if any assignment can satisfy the constraints. The expressions the variables

5

Peer Review ID: 68560210 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68560210 — enter this when you fill out your peer evaluation via gradescope

Page 10

1. cis skip. Reduce c to empty

2. cis a seq. Reduce ¢ to concat

3. cis an ¢f. Reduce c to or

4. cis an asstgn. Perform a deterministic and decidable string replacement

5. cis a while. Reduce ¢ to kleene star

The rules apply inductively on c. For all bexp and aexp, we evaluate using the operational
semantics of Imp and update the state as necessary. The resulting set S from executing e
on an arbitrary o encoded as a string via encode(o) holds all possible final strings, each
equivalent to a state via decode. Then it holds that Js € S.{c,0) | ¢’ A decode(s) = o'. If
we know the final state for ¢ then we know if halt(c) holds, and so the equivalence of ¢ is
decidable. This gives us the contradiction. O

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given DPLL-style
CNF SAT solver with the given theory of bounded arithmetic. In particular, you must
update only the Main.solve function. Your updated solver must be correct. This notably
implies that it must correctly handle all of the included test cases — we use diff for some
testing, but if you change only the listed method you should end up with the same answers
as the reference.

In addition, create an example “tricky” input that can be parsed by our test harness.

Submit your .ml and .input files.

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

Answer 3F-4:

Test input 35 and 36 are very similar in structure: they are a chain of arithmetic ex-
pressions chained with the logical and operator. When DPLL encounters this, it will assign
meta variables to each arithmetic clause and search for a solution. Since these will all be unit
clauses, DPLL will conclude that they must all be satisfiable. DPLL then queries the theory
solver on whether or not all clauses can be satisfied at the same time. The theory solver here
is an arithmetic solver that uses bruteforce search in a bounded space. Specifically, the im-
plementation will exhaustively search the space of 3 variables with values between -127 and
128 and check if any assignment can satisfy the constraints. The expressions the variables

5

Peer Review ID: 68560210 — enter this when you fill out your peer evaluation via gradescope

are associated with are >, <, and =. However, the theory doesn’t include a theory of equality
or order so it must simply exhaust the search space. To improve the performance, I would
rewrite the arithmetic solver module to take into account the constraints of already assigned
variables and the relationship between all variables, and follow the rules of arithmetic to
properly propagated these constraints similar to the theory of equality. For example, in the
case of test 35 and 36, we could narrow down the search space to 10, 11, and 12.

Extra: It only works on a small subset of integers. This could be improved if the solution
wasn’t a simple bruteforce search of a bounded space.

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

6

Peer Review ID: 68560210 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68560210 — enter this when you fill out your peer evaluation via gradescope

Page 13

