Question assigned to the following page: 2

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



EXERCISE 3F-1: Regular Expression, Large-Step

Regular expressions serve as an abstraction for string matching. This response defines large-

step operational semantics rules of inference for three primary forms of regular expressions:
o Concatenation (el e2)
e Alternation (el | e2)
o Kileene Star (e*)
The semantics are represented by the judgment:
+ e matches s leaving s’

This means that regular expression e matches some prefix of string s, leaving the suffix s'

unmatched.
Inference Rules
1. Concatenation (el e2)

A concatenation el e2 means that el must match some prefix of's, leaving s', and then e2 must

match s', leaving s":

el matches s leaving s’ I e2 matches s’ leaving s”

 ele2 matches s leaving s”

where s" is the suffix left after e2 matches s'. This ensures that el matches the beginning portion

of's, and e2 continues matching from where el left off.
2. Alternation (el | e2)
Alternation allows either el or €2 to match. This introduces two rules:

el matches s leaving s’

 el|e2 matches s leaving s’

 e2 matches s leaving s’

 el]|e2 matches s leaving s’

This ensures that both possibilities are valid, meaning that el | e2 behaves non-

deterministically by allowing either el or e2 to match.

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 2

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



3. Kleene Star (e*)
Kleene Star allows zero or more occurrences of e:
o If e* matches without consuming characters:
e * matches s leaving s
e Ife matches some prefix of s, and e* continues matching:

e matches s leaving s’ - e * matches s’ leaving s”

F e * matches s leaving s”

where s" is the suffix left after further matches. This ensures that e* can match multiple times

in a row, allowing recursive application of the rule.
Addressing Edge Cases

To ensure full rigor, we must explicitly consider cases where matching fails or where empty

strings are involved.
Failure Cases

e Ifel does not match s, then el e2 cannot match.

o [Ifel|e2is given an input that neither el nor e2 can match, then it fails to match.
Handling Empty Strings

e Concatenation with empty:

 emptye matches s leaving s

The empty string empty acts as an identity element in concatenation.

e Alternation with empty:

 empty matches s leaving s

F empty|e matches s leaving s
This ensures that if empty is an option, it allows s to remain unchanged.
e Kleene star on empty:
 empty * matches s leaving s

This rule ensures that e* matches the empty case correctly.

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 2

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



Examples

Example 1: Concatenation (el e2)

Ifel ="ab" and e2 ="c", then el e2 matches "abc", leaving an empty suffix.

Example 2: Kleene Star (e*)

Ife="a" and s = "aaa", then e* can match the first two a's, leaving "a" as the unmatched suffix.
Example 3: Handling Empty Cases

If e = empty, then empty* matches any input s leaving s unchanged.

This completes the large-step operational semantics rules for Exercise 3F-1B, now

addressing both formal notation requirements and edge cases.

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 3

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



EXERCISE 3F-2: Regular Expression and Sets

In this exercise, we attempt to define deterministic operational semantics for concatenation
(el e2) and Kleene star (e*), ensuring that each rule has a finite and fixed set of hypotheses.

However, we demonstrate that this is impossible within the given framework.
1. Incorrect Rule Attempt for Concatenation (el e2)

A deterministic operational semantics must ensure that every inference rule has a finite and
fixed set of premises. However, concatenation inherently requires checking all possible
suffixes from el, leading to an unbounded number of premises. The following rule illustrates

this issue:
A natural attempt for defining concatenation would be:

- el matches s leaving S, Vs’ € S, - e2 matches s’ leaving S’

 ele2 matches s leaving Ugreg S’
Why This Rule Fails

o The set S contains all possible suffixes from el, meaning the rule must check every

possible s' for e2.

e This results in an unbounded number of premises (Vs' € S), violating the fixed

hypothesis constraint.
o The rule is incomplete because it does not guarantee termination for all cases.
2. Incorrect Rule Attempt for Kleene Star (e*)
A common approach for Kleene star is:

F e matches s leaving S, Vs’ € S, e x matches s’ leaving S’

F e * matches s leaving S U S’
Why This Rule Fails

e The rule requires e* to recursively apply on all possible suffixes s', leading to infinite

expansion.

e Similar to concatenation, this rule introduces an unbounded number of premises,

violating the finite hypothesis constraint.

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 3

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



o The framework explicitly disallows recursion in inference rules, preventing e* from

being expressed deterministically.

o Without recursion, there is no finite way to define e* while ensuring that it correctly

captures all possible suffixes.
3. Conclusion: The Task is Impossible

o The given operational semantics framework requires inference rules with a finite and

fixed set of premises.

e Both concatenation (el ¢2) and Kleene star (e*) introduce an unbounded number of

premises, making it impossible to capture all possible suffixes deterministically.

o Because the framework does not allow recursive or infinite premises, any attempt to
define inference rules for e* and el e2 either fails to capture all cases (incompleteness)

or violates the fixed hypothesis constraint (unsoundness).

Thus, deterministic operational semantics for e* and el e2 cannot be formulated correctly

within this framework without fundamentally changing its structure.

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 4

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



EXERCISE 3F-3: Equivalence

The equivalence relation el ~ e2 for regular expressions is defined as:

el~e2 & Vs€eS, el matches s leaving S1AFe2 matches s leaving S2 = S1=S2
This problem asks whether el ~ 2 is decidable or undecidable.

Equivalence is Decidable

Unlike the equivalence relation for IMP commands (which is undecidable because it reduces
to the halting problem), regular expression equivalence is decidable. This follows from
automata theory:

1. Regular expressions can be converted into finite automata: Every regular
expression corresponds to a deterministic finite automaton (DFA) or
nondeterministic finite automaton (NFA).

2. Automata equivalence is decidable: Given two DFAs, we can check whether they
accept the same language using state minimization and difference computation.

3. Equivalence Checking Algorithm:
o Convert el and e2 into minimal DFAs.
o Compare their state transition structures.
o Ifthe resulting DFAs are identical, then el ~ e2.
o Ifthey differ, then el and e2 match different sets of suffices, proving el # e2.

Thus, el ~ e2 is computable in polynomial time using standard DFA minimization techniques,
making regular expression equivalence decidable.

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 5

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



EXERCISE 3F-4: SAT Solving

The last two included tests take significantly longer to complete due to inefficiencies in the
DPLL(T) (Davis-Putnam-Logemann-Loveland with Theories) solver, specifically in the
integration between the SAT solver and the arithmetic theory solver. Below is a detailed

analysis of the root cause and necessary optimizations.
1. Why Do the Last Two Tests Take Longer?
1.1 Causes of Slow Performance
1. Bounded Integer Arithmetic in arith.ml is Inefficient

o The arithmetic solver exhaustively searches all possible integer values for each

variable between -127 and 128.

o Instead of using constraint propagation, it iterates through every possible

assignment, leading to exponential complexity.
2. DPLL Algorithm (dpll.ml) Lacks Efficient Conflict Learning

o While unit propagation and pure literal elimination are implemented, the

solver lacks conflict-driven clause learning (CDCL).

o Excessive backtracking occurs because the solver does not effectively prune

invalid branches early.
3. Theory Solver Integration (main.ml) is Incomplete

o The SAT solver finds a Boolean model first, then checks arithmetic

constraints separately, causing redundant evaluations.

o The placeholder FIXME in solver.ml suggests that the SAT and arithmetic

solvers are not properly synchronized, worsening performance.
4. Test Cases Likely Contain Heavy Arithmetic Constraints

o The slow tests likely contain many arithmetic constraints that require

checking multiple integer values.

o This triggers repeated calls to the inefficient arithmetic solver, compounding

the slowdown.

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 5

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



2. Proposed Performance Optimization

To improve solver performance, the first module to rewrite is arith.ml (Arithmetic Theory

Solver).
2.1 How to Improve Performance
1. Replace Exhaustive Search with Constraint Propagation

o Instead of iterating through all values from -127 to 128, use interval

propagation to eliminate invalid assignments early.

o Implement bound tightening to shrink search space dynamically based on

known constraints.
2. Modify DPLL to Integrate Arithmetic Reasoning Earlier

o Modify main.ml so that arithmetic constraints are considered during SAT

solving, reducing unnecessary evaluations.
o Use incremental theory solving to avoid rechecking the same constraints.
3. Enable Early Conflict Detection in DPLL

o Implement non-chronological backtracking (backjumping) to skip over

already-explored invalid states.

o Improve variable selection heuristics (VSIDS) to prioritize decision variables

that lead to faster conflict detection.
3. Identified Code Defect (Potential Bonus Point)
Defect: Arithmetic Solver is Unnecessarily Exhaustive
Location: arith.ml

o Issue: The solver iterates through all possible values for each variable, even when an

early termination condition is met.
o Impact: Causes exponential slowdowns for larger test cases with multiple constraints.
o Fix:

o Implement constraint propagation to prune invalid variable assignments

before they are tested.

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 5

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



o Use graph-based constraint solving techniques instead of brute-force

enumeration.
4. Conclusion

e The last two tests are slow due to inefficient arithmetic constraint solving
(arith.ml).

o The egregious defect is the brute-force arithmetic solver, which should be replaced

with constraint propagation and interval analysis.

e Rewriting the theory solver interface and improving integration with DPLL will

significantly enhance efficiency.

These changes will reduce redundant evaluations and improve solver performance on large test

cases.

Peer Review ID: 310965386 — enter this when you fill out your peer evaluation via gradescope



