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Exercise 3F-1. Regular Expression, Large-Step [10 points].
Concatenation — matches e; followed by es:

I e; matches s leaving s, F e, matches s leaving s’

F e; ea matches s leaving s

or — matches e; or es:

F e; matches s leaving s’ I e matches s leaving s

ey | e; matches s leaving s’ Fe1 | e; matches s leaving s

Kleene star — matches 0 or more occurences of e:

F e e* matches s leaving s’
F e* matches s leaving s F e* matches s leaving s’

Exercise 3F-2. Regular Expression and Sets [5 points].

I claim that we cannot construct operational semantics rules of inference for ex and e;es
in the given framework because such rules would require either derivations inside of set
constructors or a set of hypothesis that vary depending on the s in question (i.e. are not
fixed and finite). See the following attempted but “wrong” rules of inference:

- e; matches s leaving Sy Vs; € Sp. F e matches s; leaving S; S = |J S;
=1

F e1 e; matches s leaving S

This rule first matches e; to get an exhaustive set of suffices Sy, then applies e, to each suffix
s; in Sy to get an exhaustive set of suffices S;. Intuitively, e;es should map to the union
of possible suffices from maching e;, then ey, and this intuitive notion of regular expression
matching is captured by the above rule. BUT, as the number of elements in Sy is not fized
(can range from 0 to the cardinality of s depending on s and e;), this rule is not valid.

F e* matches s leaving {s | s, = €* 1 '}
F e* matches s leaving S

Similar to the rules in 3F-2, this rule tries to capture the idea that the set of possible suffixes
ranges from the entire string (match to 0 occurrences) to as many repeated matches of e are
possible. BUT, this rule is not valid as it is a type error to concatenate a regular expression
to a string, so s, is not a valid suffix and this rule fails to express anything meaningful.

Exercise 3F-3. Equivalence [7 points].

I claim that e; ~ ey is decidable. Intuitively, regular expressions seem to be capturing a
syntactic and not a symantic property which should make them decidable; formally, we
define an algorithm for deciding whether e; ~ es that proceeds as follows:

1. Convert e; and e; into a composition of primary regular expression forms (simplifying

[

. and [“X” - “y”] to or statements of singletons; e? to empty | e; and e+ to e e*).
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2. Eliminate redudant expressions and simplify expressions as much as possible.

3. Return “equal” if the simplified forms of e; and ey are equivalent (where order of or
regexes does not matter) and “not equal” otherwise (as the regexes aren’t equal after
simplification, there must exist some string s for which - e; matches s leaving S; A
eo matches s leaving Sy but Sy # 55).

Exercise 3C. SAT Solving. See submission on autograder.io.

Exercise 3F-4. SAT Solving [6 points].

The last two included tests took much longer because they include more complicated in-
equalities across variables that introduce dependencies, add mixed constraints that could
preclude the SAT solver from applying certain heuristics in some cases, and complicate the
amount of effort required by the theory.

To improve performance, I would first optimize the theory solver (arth.ml) to improve the
simple but horridly inefficient bounded_search integer constraint solver. Ganziner et. al.
mention an efficient integration of specialized theory solvers within a general purpose engine,
and the specialized theory solver is currently inefficiently integrated. Instead of trying all
possible variables within the bounds, I would at minimum take the constraints into account
to avoiding needlessly searching unnecessary assignments when there are more than one
variable and clear constraints, and strongly consider replacing bounded search with another
integer constrain solving method altogether.

Comment: considering all possible integer valutions to all variables in the constraints, but
only working with integer variables between -127 to 128 is not the behavior we’re wanting
from our solver.
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