13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68533798 — enter this when you fill out your peer evaluation via gradescope

Page 3

3F-2
Concatenation:

- e, matches s leaving s’ - e, matches s’ leaving s”

I e,e, matches s leaving s”

Or:
- e, matches s leaving s’ - e, matches s leaving s’
F e, | e, matches s leaving s’ F e, | e, matches s leaving s’
Kleene star:

F e matches s leaving s’ I e * matches s’ leaving s”

F e * matches s leaving s”

F e * matches s leaving s

Peer Review ID: 68533798 enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68533798 — enter this when you fill out your peer evaluation via gradescope

Page 5

3F-3

| argue that it is not possible to give operational semantics rules of inference for evaluating
regexes deterministically. Consider the following attempts at opsem rules for

@ s

(1)

- e * matches s leaving {s}

— e * matches s leaving S = {s'|s = e :: s’} - e * matches s'leaving S’

— e * matches s leaving S U S’
e,6:

)

—| e; matches s leaving S = {s'|s = ¢ :: s’} - e, matches s'leaving S’ = {s"|s" = e, :: 5}

— e;e, matches s leaving S U S’

On first glance, these rules look correct. Closer inspection of rules (2) and (3) reveal that the
second hypotheses of the rules are dependent on the first hypotheses. The second hypotheses
contain the symbol s’, which represent the elements in the set produced by the first
hypotheses. The second judgment must be evaluated for all the elements in the set produced
by the first judgement (S). Since the size of the set S is not known statically, it is not possible to
write down the rules with a fixed number of hypotheses. Thus, regexes that produce sets as
answers cannot be evaluated using operational semantics with a fixed number of hypotheses.

Peer Review ID: 68533798 enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68533798 — enter this when you fill out your peer evaluation via gradescope

Page 7

3F-4
| claim that regex equivalence is decidable. To compute it, we use the following algorithm:
1. Convert each regex into a Deterministic Finite Automaton. (I know this is possible because
this link says so.)
2. Compare the DFAs of each regex using graph-isomorphism.
2.1 If the graphs are isomorphic, return that the regexes are equivalent.

2.2 Return not equivalent otherwise

Since conversion of regex to DFA terminates and graph isomorphism check also terminates,
we can be sure that regex equivalence checking also terminates.

Thus, the equivalence of two regexes is decidable.

Peer Review ID: 68533798 enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68533798 — enter this when you fill out your peer evaluation via gradescope

Page 9

3F-5

Test 35 and 36 are the only ones that have dependent arithmetic variables. The more
constraining conditions such as equality are present later in the expression than less
constraining conditions such as inequalities. This means that the arithmetic module produces
many solutions for the first few inequalities, but each one is rejected because of a more
constraining equality condition that is evaluated later. This causes a lot of waste of
computation.

Since tests 35 and 36 are the only ones with dependent variables, this phenomenon only
occurs in those tests.

| would improve the arith.ml module. The current arithmetic module is very inefficient. It
basically searches the entire search space of 256”n (h=number of theory symbols) by brute
force to find a solution. | would include the following heuristics to improve the performance:

1. Inspect the constraints to identify sets of dependent variables and then solve each set
separately.

2. Within each set, solve for the most constrained variable first and then solve for variables
with less constraints. This reduces the chance of an assignment made to a less constrained
variable from further constraining a more constrained variable.

3. Inspect the constraints to narrow the search space. For example, if one of the constraints is
x>0, don’t check values <=0.

4. The search space of each variable can also be constrained by transitively applying
constraints of variables the that current variable is dependent on.

Peer Review ID: 68533798 enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68533798 — enter this when you fill out your peer evaluation via gradescope

Page 11

