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Exercise 3F-2. Regular Expression, Large-Step [10 points].

F e; matches s leaving ¢’ F e; matches s’ leaving s”
F e; eo matches s leaving s”

F e; matches s leaving '
ey | ea matches s leaving s

F e5 matches s leaving s
ey | ea matches s leaving s

F e x matches s leaving s

F e matches s leaving s’ F e x matches s’ leaving s”

F e x matches s leaving s”

Exercise 3F-3. Regular Expression and Sets [5 points].

This can not be done.

e | e; eo matches s leaving S is not possible because the matching of e, is dependent on
each of the suffixes after matching e;. While the number of suffix is not fixed, so the
matching of e; can not be expressed with fixed number of hypothesises.

e To express F e x matches s leaving S, it at least have to express the special case of
F e e matches s leaving S. Applying same reason above here, we can prove that this
special case is not expressible, which proves the general rule of - ex matches s leaving S
is also not expressible.

Exercise 3F-4. Equivalence [7 points].
This is possible.

Since any regular expression can be converted to a DFA, and then reduced to a unique
minimal-DFA, we just have to compare if the minimal-DFA is the same.
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Exercise 3F-2. Regular Expression, Large-Step [10 points].

F e; matches s leaving ¢’ F e; matches s’ leaving s”
F e; eo matches s leaving s”

F e; matches s leaving '
ey | ea matches s leaving s

F e5 matches s leaving s
ey | ea matches s leaving s

F e x matches s leaving s

F e matches s leaving s’ F e x matches s’ leaving s”

F e x matches s leaving s”

Exercise 3F-3. Regular Expression and Sets [5 points].

This can not be done.

e | e; eo matches s leaving S is not possible because the matching of e, is dependent on
each of the suffixes after matching e;. While the number of suffix is not fixed, so the
matching of e; can not be expressed with fixed number of hypothesises.

e To express F e x matches s leaving S, it at least have to express the special case of
F e e matches s leaving S. Applying same reason above here, we can prove that this
special case is not expressible, which proves the general rule of - ex matches s leaving S
is also not expressible.

Exercise 3F-4. Equivalence [7 points].
This is possible.

Since any regular expression can be converted to a DFA, and then reduced to a unique
minimal-DFA, we just have to compare if the minimal-DFA is the same.
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Exercise 3F-2. Regular Expression, Large-Step [10 points].

F e; matches s leaving ¢’ F e; matches s’ leaving s”
F e; eo matches s leaving s”

F e; matches s leaving '
ey | ea matches s leaving s

F e5 matches s leaving s
ey | ea matches s leaving s

F e x matches s leaving s

F e matches s leaving s’ F e x matches s’ leaving s”

F e x matches s leaving s”

Exercise 3F-3. Regular Expression and Sets [5 points].

This can not be done.

e | e; eo matches s leaving S is not possible because the matching of e, is dependent on
each of the suffixes after matching e;. While the number of suffix is not fixed, so the
matching of e; can not be expressed with fixed number of hypothesises.

e To express F e x matches s leaving S, it at least have to express the special case of
F e e matches s leaving S. Applying same reason above here, we can prove that this
special case is not expressible, which proves the general rule of - ex matches s leaving S
is also not expressible.

Exercise 3F-4. Equivalence [7 points].
This is possible.

Since any regular expression can be converted to a DFA, and then reduced to a unique
minimal-DFA, we just have to compare if the minimal-DFA is the same.
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Exercise 3F-4. SAT Solving [6 points].

e The main reason of the solver being slow is its bad integer arithmetic constraint solver
part, namely the arith.ml, which will be the single module I will rewrite first. It is
super slow because it brute-force all the possible value combination of all the variables.
It is obvious that we do not have to iterate all the possible values of x to figure out
how to satisfy the literal x = 1. There are smarter algorithms to implement arith.ml.
For example if we are solving only linear integer arithmetic, I will follow this paper:
Jovanovi¢ and Moura 2013; for more complicated non-linear integer arithmetic, I will
probably start from here: Cimatti et al. 2018.

e Another reason is that this implementation is a lazy-version of the DPLL(T). The
main difference is how the SAT solver interacts with the theory solver(or the arithmetic
constraint solver in our case).

— For our lazy version, the SAT solver spits out the whole possible assignment,
then the theory solver check if that is consistent, if not add the negation of the
assignment back to the initial clause and start over again. This is slow because
all the theory information is not used to guide the search. For example for clause
=5 AN x #5 A (something complicated) A ..., the SAT solver will keep
generating different assignments for the trialing complicated clauses but always
assign both x = 5 and x # 5 to be true, while the theory solver will keep pushing
back the negation of all these assignments, until they tried all the combinations.

— The DPLL(T), on the contrary, have several optimizations for that.

* Check the consistency of the partial assignments while being built. This
means instead of having SAT propose a full assignment, SAT solver will ask
the theory solver to check each step it makes. This allows early termination
of impossible search directions.

x When encounter inconsistency, instead of adding the negation of the whole
assignment, we ask the theory solver to narrow down a inconsistent subset
and add the negation of that. This will enable a faster elimination of the
impossible assignments.

x After adding the negation clause, instead of starting over, we only backtrack
to the point where is still consistent with the added clause. This will poten-
tially save some of the repeated initial assignments like the unit clauses.

All of these optimizations are different ways to use the theory information to direct
the SAT search, which makes DPLL(T) much faster than our lazy implementation.
However, implementing that is a lot of extra work. We have to rewrite our SAT
solver and theory solver to be incremental and backtrack-able and also rewrite
the main file fit to in all the incremental checking and backtracking control flows.
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