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Exercise 3F-2. Regular Expression, Large-Step [10 points]. Regular Expressions are commonly
used as abstractions for string matching. Here is an abstract grammar for regular expressions:

e = %" singleton — matches the character <
| empty skip — matches the empty string
| e1e concatenation — matches e; followed by es
| e1]ea or — matches e; or eg
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

| [’x” —7y”] matches any character between X and y inclusive
| et matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The last four cases can be defined
in terms of the first five. We also give an abstract grammar for strings (modeled as lists of characters):

s == nil empty string

| 7x” s string with first character X and other characters s
We write "bye” as shorthand for ”b” :: ”y” :: ”e” :: nil. This exercise requires you to give large-step
operational semantics rules of inference related to regular expressions matching strings. We introduce a
judgment:

F e matches s leaving s’

The interpretation of the judgment is that the regular expression e matches some prefix of the string s,
leaving the suffix s’ unmatched. If s’ = nil then r matched s exactly. Examples:

F ”h”(”e”+) matches "hello” leaving ”110”

Note that this operational semantics may be considered non-deterministic because we expect to be able to
derive all three of the following:

F ("h” | ”€”)* matches "hello” leaving ”ello”
F ("h” | ”€”)* matches "hello” leaving ”hello”
F ("h” | ”€”)* matches "hello” leaving ”11l0”
Here are two rules of inference:
s="x" ¢
F ”x” matches s leaving s’ F empty matches s leaving s

Give large-step operational semantics rules of inference for the other three primal regular expressions.

Solution:

F e; matches s leaving s’ F es matches s’ leaving s” F e; matches s leaving s’

F e1es matches s leaving s” F e1]e2 matches s leaving s’

F e, matches s leaving s’

F e1|e2 matches s leaving s’ F ex matches s leaving s

F e matches s leaving s’ F ex matches s’ leaving s”

F ex matches s leaving s”

Peer Review ID: 68553714 — enter this when you fill out your peer evaluation via gradescope



2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68553714 — enter this when you fill out your peer evaluation via gradescope

Page 5



Exercise 3F-3. Regular Expression and Sets [5 points]. We want to update our operational se-
mantics for regular expressions to capture multiple suffices. We want our new operational semantics to be
deterministic — it return the set of all possible answers from the single-answer operational semantics above.
We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F ”x” matches s leaving {s' | s =7x" :: §'} F empty matches s leaving {s}

F e; matches s leaving S+ es matches s leaving S’

F e1 | ea matches s leaving S U S’
You must do one of the following:

e cither give operational semantics rules of inference for ex and eje;. You may not place a derivation
inside a set constructor, as in: {z | Jy. F e matches x leaving y}. Each inference rules must have a
finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given framework. Back up
your argument by presenting two attempted but “wrong” rules of inference and show that each one is
either unsound or incomplete with respect to our intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize whether “you
are just missing something” or “the problem is actually impossible”.

Solution: I argue that the task is impossible because sequencing cannot be properly expressed in the
given framework. That is, there cannot exist a rule which consists of multiple dependent hypotheses
(which are necessary for concatentation and kleene star) because the output of one hypothesis (a set)
does not “type match” the input of the other (a string.)

k= ey matches s leaving S S" = {s'|s" € Uy,,cg I~ €2 matches s; leaving S;}

 e1es matches s leaving S’

F e matches s leaving S S = {s'[s" € Uy, c5 - € * matches s; leaving S;}

F e * matches s leaving S’

Each of these inference rules are necessarily unsound since they depend on a variable number of hy-
potheses via the derivation appearing in the set constructors. I assert that this problem is unavoidable
for dependent sequenced hypotheses since the cardinality and contents of S are neither fixed nor finite,
yet the derivation of the second hypothesis is wholly dependent on both the cardinality and content of
S! A different framework in which a regular expression matches against a set of strings s may correct
this problem.

Exercise 3F-4. Equivalence [7 points]. In the class notes (usually marked as “optional material” for
the lecture component of the class but relevant for this question) we defined an equivalence relation ¢; ~ ¢o
for IMP commands. Computing equivalence turned out to be undecideable: ¢ ~ c iff ¢ halts. We can define
a similar equivalence relation for regular expressions: e; ~ ey iff Vs € S. F e; matches s leaving S; A F
ey matches s leaving S, = S; = S5 (note that we are using an “updated” operational semantics that
returns the set of all possible matched suffices, as in the previous problem).

You must either claim that e; ~ es is undecideable by reducing it to the halting problem or explain in
two or three sentences how to compute it. You may assume that I the reader is familiar with the relevant
literature.
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Exercise 3F-3. Regular Expression and Sets [5 points]. We want to update our operational se-
mantics for regular expressions to capture multiple suffices. We want our new operational semantics to be
deterministic — it return the set of all possible answers from the single-answer operational semantics above.
We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F ”x” matches s leaving {s' | s =7x" :: §'} F empty matches s leaving {s}

F e; matches s leaving S+ es matches s leaving S’

F e1 | ea matches s leaving S U S’
You must do one of the following:

e cither give operational semantics rules of inference for ex and eje;. You may not place a derivation
inside a set constructor, as in: {z | Jy. F e matches x leaving y}. Each inference rules must have a
finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given framework. Back up
your argument by presenting two attempted but “wrong” rules of inference and show that each one is
either unsound or incomplete with respect to our intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize whether “you
are just missing something” or “the problem is actually impossible”.

Solution: I argue that the task is impossible because sequencing cannot be properly expressed in the
given framework. That is, there cannot exist a rule which consists of multiple dependent hypotheses
(which are necessary for concatentation and kleene star) because the output of one hypothesis (a set)
does not “type match” the input of the other (a string.)

k= ey matches s leaving S S" = {s'|s" € Uy,,cg I~ €2 matches s; leaving S;}

 e1es matches s leaving S’

F e matches s leaving S S = {s'[s" € Uy, c5 - € * matches s; leaving S;}

F e * matches s leaving S’

Each of these inference rules are necessarily unsound since they depend on a variable number of hy-
potheses via the derivation appearing in the set constructors. I assert that this problem is unavoidable
for dependent sequenced hypotheses since the cardinality and contents of S are neither fixed nor finite,
yet the derivation of the second hypothesis is wholly dependent on both the cardinality and content of
S! A different framework in which a regular expression matches against a set of strings s may correct
this problem.

Exercise 3F-4. Equivalence [7 points]. In the class notes (usually marked as “optional material” for
the lecture component of the class but relevant for this question) we defined an equivalence relation ¢; ~ ¢o
for IMP commands. Computing equivalence turned out to be undecideable: ¢ ~ c iff ¢ halts. We can define
a similar equivalence relation for regular expressions: e; ~ ey iff Vs € S. F e; matches s leaving S; A F
ey matches s leaving S, = S; = S5 (note that we are using an “updated” operational semantics that
returns the set of all possible matched suffices, as in the previous problem).

You must either claim that e; ~ es is undecideable by reducing it to the halting problem or explain in
two or three sentences how to compute it. You may assume that I the reader is familiar with the relevant
literature.
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Solution:

The problem can be decided by converting the relevant regular expressions to finite automata
(via Thompson’s algorithm or the like), converting the directed graph representations of these au-
tomata to their deterministic and minimized forms Gp,G2, and finally through an instance of the
graph isomorphism problem on G; and Gj. I claim that the graphs are isomorphic if and only if
Vs € S. I e; matches s leaving S1 A F ey matches s leaving S = 57 = S5. Observe that the set S;
corresponds to the set of unconsumed symbols resulting from each unique path to an acceptance state
in G; which implies S; = S5 when G; and G4 are isomorphic.

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web page. Update
the skeletal SMT solver so that it correctly integrates the given DPLL-style CNF SAT solver with the given
theory of bounded arithmetic. In particular, you must update only the Main.solve function. Your updated
solver must be correct. This notably implies that it must correctly handle all of the included test cases —
we use diff for some testing, but if you change only the listed method you should end up with the same
answers as the reference.

In addition, create an example “tricky” input that can be parsed by our test harness.

Submit your .ml and .input files.

Solution: Submitted to Gradescope.

Exercise 3F-5. SAT Solving [6 points]. Why do the last two included tests take such a comparatively
long time? Impress me with your knowledge of DPLL(T) — feel free to use information from the assigned
reading or related papers, not just from the lecture slides. I am looking for a reasonably detailed answer.
Include a discussion of which single module you would rewrite first to improve performance, as well as how
you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect. Comment.

Solution: Both tests 35 and 36 consist of a conjunction of arithmetic expressions. Since the SAT solver
converts each arithmetic expressions to a unique temporary literal, the final CNF formula for tests 35 and
36 are conjunctions of unit clauses. Finding satisfying assignments for such CNF formulas is trivial, so it
is most likely that the arithmetic contraint solver is responsible for the observed slowdown. Examining
arith.ml, it is clear that the solver takes an extraordinarily naive approach to constraint satisfaction.
The heart of the algorithm, arith.ml:62-72, iterates over each arithmetic variable considering every
possible combination of numeric values from -127 to 128. This implies an asymptotic runtime complexity
of O(256%) for k unique variables. Most egregiously, the constraint solver even considers 256 values for
variables x belonging to equality expressions, i.e. those of the form x = [ for a number literal [. Significant
runtime savings could be realized if only the arithmetic constraint solver did an inital pass to add equality
expressions directly to the model. As a proof-of-concept for this claim, I have made a small modification
to arith.ml that adds the assignment z = 10 to the model initially and removes z from the list of
variables that need assignments. The modification involved strategic placement of the following lines:

e let model = StringMap.add "z" 10 model in
e let variables = StringSet.remove "z" variables in

The results (given the starter version of arith.ml first):

$ time cat tests/test-35.input | ./solver

4
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Solution:

The problem can be decided by converting the relevant regular expressions to finite automata
(via Thompson’s algorithm or the like), converting the directed graph representations of these au-
tomata to their deterministic and minimized forms Gp,G2, and finally through an instance of the
graph isomorphism problem on G; and Gj. I claim that the graphs are isomorphic if and only if
Vs € S. I e; matches s leaving S1 A F ey matches s leaving S = 57 = S5. Observe that the set S;
corresponds to the set of unconsumed symbols resulting from each unique path to an acceptance state
in G; which implies S; = S5 when G; and G4 are isomorphic.

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web page. Update
the skeletal SMT solver so that it correctly integrates the given DPLL-style CNF SAT solver with the given
theory of bounded arithmetic. In particular, you must update only the Main.solve function. Your updated
solver must be correct. This notably implies that it must correctly handle all of the included test cases —
we use diff for some testing, but if you change only the listed method you should end up with the same
answers as the reference.

In addition, create an example “tricky” input that can be parsed by our test harness.

Submit your .ml and .input files.

Solution: Submitted to Gradescope.

Exercise 3F-5. SAT Solving [6 points]. Why do the last two included tests take such a comparatively
long time? Impress me with your knowledge of DPLL(T) — feel free to use information from the assigned
reading or related papers, not just from the lecture slides. I am looking for a reasonably detailed answer.
Include a discussion of which single module you would rewrite first to improve performance, as well as how
you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect. Comment.

Solution: Both tests 35 and 36 consist of a conjunction of arithmetic expressions. Since the SAT solver
converts each arithmetic expressions to a unique temporary literal, the final CNF formula for tests 35 and
36 are conjunctions of unit clauses. Finding satisfying assignments for such CNF formulas is trivial, so it
is most likely that the arithmetic contraint solver is responsible for the observed slowdown. Examining
arith.ml, it is clear that the solver takes an extraordinarily naive approach to constraint satisfaction.
The heart of the algorithm, arith.ml:62-72, iterates over each arithmetic variable considering every
possible combination of numeric values from -127 to 128. This implies an asymptotic runtime complexity
of O(256%) for k unique variables. Most egregiously, the constraint solver even considers 256 values for
variables x belonging to equality expressions, i.e. those of the form x = [ for a number literal [. Significant
runtime savings could be realized if only the arithmetic constraint solver did an inital pass to add equality
expressions directly to the model. As a proof-of-concept for this claim, I have made a small modification
to arith.ml that adds the assignment z = 10 to the model initially and removes z from the list of
variables that need assignments. The modification involved strategic placement of the following lines:

e let model = StringMap.add "z" 10 model in
e let variables = StringSet.remove "z" variables in

The results (given the starter version of arith.ml first):

$ time cat tests/test-35.input | ./solver

4
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Unsatisfiable!

real Om5.029s

user Om4.933s

sys 0m0.027s

$ vim arith.ml # changes made here
$ make clean && make all

$ time cat tests/test-35.input | ./solver
Unsatisfiable!
real Om0.140s

user Om0.051s
sys Om0.023s

A 3592.14% real time gain. Of course a general algorithm for this optimization would be much more
complex than my case-specific modification, but still far from difficult to implement.

Submission. Turn in the formal component of the assignment as a single PDF document via the gradescope
website. Your name and Michigan email address must appear on the first page of your PDF submission but
may not appear anywhere else. Turn in the coding component of the assignment via the autograder.io
website.
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