13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 3F-2. Regular Expression, Large-Step [10 points]. Regular Expressions
are commonly used as abstractions for string matching. Here is an abstract grammar for
regular expressions:

e = "% singleton — matches the character X
| empty skip — matches the empty string
| e e concatenation — matches e; followed by e
| e] e or — matches e; or e
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

| [’x” —”y”] matches any character between X and y inclusive
| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The last four
cases can be defined in terms of the first five. We also give an abstract grammar for strings
(modeled as lists of characters):

s u= nil empty string

’ 7 &7

x” 1 s string with first character X and other characters s

We write "bye” as shorthand for "b” :: ”y” :: 7e” :: nil. This exercise requires you to give
large-step operational semantics rules of inference related to regular expressions matching

strings. We introduce a judgment:
e matches s leaving s’

The interpretation of the judgment is that the regular expression e matches some prefix of
the string s, leaving the suffix s’ unmatched. If s’ = nil then » matched s exactly. Examples:

F7h”(”e”+) matches "hello” leaving "110”

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

F ("h” | 7e”)* matches "hello” leaving "ello”
F ("h” | ”e”)* matches "hello” leaving “hello”
F ("h” | 7e”)* matches "hello” leaving 7110”

Here are two rules of inference:

Wem®' on wl

§="%"ns
F 7x” matches s leaving s’ F empty matches s leaving s

Give large-step operational semantics rules of inference for the other three primal regular
expressions.

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

Solution: The rules for ejeq, e1]ea, and ex are below:

F e; matches s leaving s;

F e matches s; leaving so

F e matches s leaving s;

- Concatenation
F ei1es matches s leaving s

F e; matches s leaving s;

k- e1]e2 matches s leaving s;

F e matches s leaving so

k- e1]e2 matches s leaving so

. 1
F e * matches s leaving s Kleens

F e * matches s; leaving s5

Peer Review ID: 68535107

. Kleene2
F e * matches s leaving s

enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

Page 6

Exercise 3F-3. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

k- e matches s leaving S

And use rules of inference like the following:

F ”x” matches s leaving {s' | s ="x" :: §'} - empty matches s leaving {s}

F e; matches s leaving S F e; matches s leaving S’
F ey | ea matches s leaving SU S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and ejes. You may not place
a derivation inside a set constructor, as in: {z | Jy. F e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

Solution:

1-2 Sentence Argument: This cannot be done correctly in the given framework
because the rules for ejes and ex must include a variable number of hypotheses, which
violates the requirement that the number of hypotheses must be fixed. For example, if
F e; matches s leaving S, the we must try matching ey to all such s’ € S; likewise, if -
e matches s leaving S, then we must try matching ex to all s € S.

“Wrong” Rules of Inference: Below are two attempted but “wrong” rules of inference
that are both incomplete with respect to our intuitive notion of regular expression matching.
This rules avoid using a variable number of hyptheses by only matching e; and ex to a single
element of S.

F e; matches s leaving S F e; matches s; € S leaving S’
F eies matches s leaving S’

Concatenation

F e matches s leaving S F e x matches s; € S leaving S’
e * matches s leaving S' U {s}

Kleene

4

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

(Note: In the above rules, we define s; to be least element of S in a lexicographical
ordering of S. Lexicographic ordering is defined to be the standard dictionary ordering of
strings, specifically:

778.777 77b77, - 77277, 77a.a.777 77ab77, . ”aZ”7 7’bb77’ - ”ZZ”, 77aaa77, .

In any case, S must be a finite set, as s has finite length and there cannot be an infinite
number of suffices of a finite-length string. All finite sets can be well-ordered such that
there exists a least element [1]. The lexicographic ordering presented above is just one such
ordering.)

We see that the Concatenation rule is incomplete as follows. Consider the string s =
"hello”, and suppose we want to match the regular expression (("h”|”e”)+)("e”|"1”) to s.
("h"|”e”)+ matches s leaving S = {"ello”,”110” }. Because we use lexicographic ordering
to select s, we use "110” as s; and match the regular expression ("e”|”1”) to s, leaving
S" = {"10"}. This is not complete, however, because (("h”|”e”)+)("e”|”1”) also matches s
leaving "110”, meaning that S’ should be the set {"10”,”110”}, not just {"10”}.

We see that the Kleene rule is incomplete as follows. Consider the string s = "aab”,
and suppose we want to match the regular expression ("a”|”’aa”) to s. ("a”|”aa”) matches
s leaving S = {"ab”,”b”}. Because we use lexicographic ordering to select sy, we use
"b” as s; and match the regular expression ("a”|’aa”)* to s;. In cases like this where e
does not match a string s, we assume that we have a base case rule that matches ex to s
leaving {s}. This means that the set S’ will be {"b”}, and the conclusion of the Kleene rule
will match ("a”|"aa”)* to s = "aab” leaving {"aab”,”b”}. This is not complete however,

Y00

because ("a”|”’aa”)* also matches s = ”aab” leaving ”ab”, meaning that S’ should be the
set {"aab”,”ab”,”b" }, not just {"aab”,”b”}.

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

References

[1] E. S. Keeping, “A note on the well-ordering of sets,” Mathematics Magazine, vol. 33,
no. 1, pp. 4345, 1959. [Online]. Available: http://www.jstor.org/stable/3029469

[2] M. Almeida, N. Moreira, and R. Reis, “Testing the equivalence of regular expressions.”

[3] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Dpll (t): Fast deci-
sion procedures,” in International Conference on Computer Aided Verification. Springer,
2004, pp. 175-188.

10

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

Page 10

Exercise 3F-4. Equivalence [7 points|. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ c iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ep iff Vs € S. F e; matches s leaving S; A F ey matches s leaving S —>
S1 = S (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ e is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

Solution: The equivalence of e; and es can be computed by first constructing two non-
deterministic finite automata (NFA’s) N; and N,, which accept the same strings matched
by e; and eq, respectively. Then, we convert Ny and N, to two deterministic finite automata
(DFA’s) labeled Dy and Ds, respectively, such that Nj is equivalent to Dy and Nj is equiv-
alent to Dy. We then minimize both D; and D, (convert them to forms with minimum
numbers of states), and because equivalent minimized DFA’s are unique up to isomorphism,
the minimized versions of D; and Dy can be compared using a standard representation to
determine if S; = S, [2].

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

References

[1] E. S. Keeping, “A note on the well-ordering of sets,” Mathematics Magazine, vol. 33,
no. 1, pp. 4345, 1959. [Online]. Available: http://www.jstor.org/stable/3029469

[2] M. Almeida, N. Moreira, and R. Reis, “Testing the equivalence of regular expressions.”

[3] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Dpll (t): Fast deci-
sion procedures,” in International Conference on Computer Aided Verification. Springer,
2004, pp. 175-188.

10

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

Page 13

Exercise 3F-5. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

Solution: The last two included tests take a comparatively long time because unit
propagation in the code does not utilize the theory of arithmetic to eliminate theory clauses
and literals. In normal DPLL, when a unit clause is encountered, the single literal in the
clause is assigned to true. Then, every clause containing that literal is removed, and the
complement of the literal is removed from every clause in which this complement appears. In
DPLL(T) with the theory of arithmetic, however, unit propagation can continue even further.
For example, in test case 35, we have (z > y) && (y > z) && (2 = 10) && (z < 12). By
assertions to the bounded arithmetic theory, the DPLL(T) algorithm can transitively infer
that (x >= 12) because it must be that (y >= 11) (since (y > 2)), (z > y), and all
arithmetic literals must be integers. This means that, if the theory clause (z < 12) were
labeled T4, DPLL(T) would be able to conclude 74 and immediately see that the formula
is unsatisfiable. This is exactly the kind of enhancement to unit propagation mentioned
on page 6 of “DPLL(T): Fast Decision Procedures”, where the authors state, “In DPLL(T),
... additional literals can be set to false as a consequence of the assertions made to the theory
solver” [3]. The functionality to make such conclusions using the arithmetic theory does not
exist in the Dpll and Arith modules. Without them, the bounded arithmetic theory solver
will need to try a much larger space of values for and y, whereas it could have concluded
that the formula was unsatisfiable by making assertions to the theory of arithmetic during
unit propagation.

Likewise, for test case 36, we have (z > y) && (y > z) && (z = 10) && (2 < 13). Just
as in test case 35, DPLL(T) should be able to transitively infer that (xz >= 12) by assertions
to the theory of arithmetic, allowing it to remove the clauses (y > z) and (z = 10) as well
as change (z > y) to (z >= 12). This eliminates the need to search for values of y; now the
theory of arithmetic must only search for values of x that satisfy (z >= 12) && (z < 13),
which has the solution z = 12.

To solve this issue, I would modify the Dp11 module, specifically in the handle unit_clauses
function. In this function, I would add an additional call to the arithmetic theory when a
unit clause is propagated to determine what new clauses have been made true or false by
the addition of the unit clause. I would then add these new clauses to the list of clauses
and remove any unnecessary clauses before re-running the handle unit clauses function.
This would also require the addition of a function to perform inference on the current list of
clauses in the Arith module to discover what new clauses have become true or false when
propagating a unit clause.

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

Bonus Point: The defect in the code mentioned in the problem statement is that the
Dpll module eliminates pure variables when it should not do so. This is because theory terms
may be dependent, unlike propositional logic terms which are independent. We saw this in
lecture through the example query (z > 10 || z < 3) && (z > 10 || z < 9) && (x < 7).
Although x > 10 only appears positively in the query, we cannot mark it as true in the
model and remove all clauses containing it because z > 10 and x < 7 are dependent terms;
they cannot be true at the same time. This will lead the code to conclude that the query is
unsatisfiable, when in reality we could satisfy it with the model z = 2.

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

References

[1] E. S. Keeping, “A note on the well-ordering of sets,” Mathematics Magazine, vol. 33,
no. 1, pp. 4345, 1959. [Online]. Available: http://www.jstor.org/stable/3029469

[2] M. Almeida, N. Moreira, and R. Reis, “Testing the equivalence of regular expressions.”

[3] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Dpll (t): Fast deci-
sion procedures,” in International Conference on Computer Aided Verification. Springer,
2004, pp. 175-188.

10

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68535107 — enter this when you fill out your peer evaluation via gradescope

Page 17

