13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 67538562 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 2. [10 points]. The large-step rules are as follows. For concatenation:

F e; matches s leaving s” I e, matches s” leaving s

I

F e1 es matches s leaving s’

for or:
F e; matches s leaving &' F e, matches s leaving &'

e | e; matches s leaving s’ ey | eo matches s leaving s’

for Kleene star: _
F empty | (e ex) matches s leaving s

F ex matches s leaving s’

Exercise 3. [5 points]. The deterministic large-step rules are as follows. For Kleene star:

e matches s leaving S S =0o,{s}
F ex matches s leaving {s}
ke matches s leaving S S # @, {s} & = Ly(S)
 ex matches s leaving S’
F N(e & !(empty) & !(s — s')) ex matches s leaving S”
F ex matches s leaving {s} U S" U S”

bl

Here Ly(S) denotes the longest! string in S that is not s itself; s — s’ denotes the prefix
of s before the suffix ', which is also regarded as the corresponding regular expression
that only matches this literal string; ! and & are complement and intersection of regular
expressions (which are valid as regular expressions are closed under taking complement
and union and thus intersection); and N(e) denotes “normalizing” regular expression e to
remove ! and & used inside (which is also valid as | and Kleene star * are complete for
regular expressions). Note that the third rule applies when S # @,{s}, so s = L(S)
always exists and is shorter than s, assuring that the third rule always makes progress when
recursing on the match for S’. To clarify, the main idea here is that ex is equivalent to
empty | ((s — &) ex) | ((e & !(empty) & I(s — §’)) ex) where s — s is some match of e against
5.2 This decomposition helps handle such matching s — s’ one by one, which is somehow
forced by the limitation in the given framework that only a finite and fixed set of hypothesis
is allowed in each inference rule.

For concatenation e; ey, the main idea of the rules is to reduce concatenation to other

'Tt can actually be arbitrary choice and need not be the longest.

2] am not completely sure that the third rule always makes progress when recursing on the match for S”,
but intuitively by taking & ! (s — '), the e & !(empty) & !(s — s’) part matches for at most S\ {s'}, whose
size is strictly smaller than S, and finally the recursion should reach the S = @ base case, if not ending at
other rules for other grammars.

Peer Review ID: 67538562 — enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 67538562 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 2. [10 points]. The large-step rules are as follows. For concatenation:

F e; matches s leaving s” I e, matches s” leaving s

I

F e1 es matches s leaving s’

for or:
F e; matches s leaving &' F e, matches s leaving &'

e | e; matches s leaving s’ ey | eo matches s leaving s’

for Kleene star: _
F empty | (e ex) matches s leaving s

F ex matches s leaving s’

Exercise 3. [5 points]. The deterministic large-step rules are as follows. For Kleene star:

e matches s leaving S S =0o,{s}
F ex matches s leaving {s}
ke matches s leaving S S # @, {s} & = Ly(S)
 ex matches s leaving S’
F N(e & !(empty) & !(s — s')) ex matches s leaving S”
F ex matches s leaving {s} U S" U S”

bl

Here Ly(S) denotes the longest! string in S that is not s itself; s — s’ denotes the prefix
of s before the suffix ', which is also regarded as the corresponding regular expression
that only matches this literal string; ! and & are complement and intersection of regular
expressions (which are valid as regular expressions are closed under taking complement
and union and thus intersection); and N(e) denotes “normalizing” regular expression e to
remove ! and & used inside (which is also valid as | and Kleene star * are complete for
regular expressions). Note that the third rule applies when S # @,{s}, so s = L(S)
always exists and is shorter than s, assuring that the third rule always makes progress when
recursing on the match for S’. To clarify, the main idea here is that ex is equivalent to
empty | ((s — &) ex) | ((e & !(empty) & I(s — §’)) ex) where s — s is some match of e against
5.2 This decomposition helps handle such matching s — s’ one by one, which is somehow
forced by the limitation in the given framework that only a finite and fixed set of hypothesis
is allowed in each inference rule.

For concatenation e; ey, the main idea of the rules is to reduce concatenation to other

'Tt can actually be arbitrary choice and need not be the longest.

2] am not completely sure that the third rule always makes progress when recursing on the match for S”,
but intuitively by taking & ! (s — '), the e & !(empty) & !(s — s’) part matches for at most S\ {s'}, whose
size is strictly smaller than S, and finally the recursion should reach the S = @ base case, if not ending at
other rules for other grammars.

Peer Review ID: 67538562 — enter this when you fill out your peer evaluation via gradescope

grammars based on the structure of e;:

F "x" matches s leaving & F”x"” matches s leaving {s'} F e matches s’ leaving S

I

- 7x" ey matches s leaving @’ F”x" ey matches s leaving S
F es matches s leaving S

F empty e, matches s leaving S’
F (e1 e2) | (¢} e2) matches s leaving S

I

F (e1 | €]) ea matches s leaving S
and for the remaining case ex ey, the rules are similar to those for Kleene star:3

I e matches s leaving S S =0,{s} I es matches s leaving T'
F ex eo matches s leaving T
ke matches s leaving S S # @,{s} & = Ly(S)
F e; matches s leaving T’

7}

F ex ey matches s’ leaving S’
F N(e & !(empty) & (s — ') ex e, matches s leaving S”
F ex ey matches s leaving TU S’ U S” '

Again similarly the main idea in the case ex e5 is that ex e is equivalent to es | ((s—5') ex e3) |
((e & !(empty) & (s — §')) ex e3) where s — ¢ is some match of e against s.

Exercise 4. [7 points]. The equivalence of regular expressions is decidable, using the
procedure below.

First of all note that it is valid to take the complement le of a regular expression e (e.g.
by flipping the accept/reject states of the corresponding deterministic finite-state automaton
(DFA), as regular expressions are equivalent to DFAs) and thus also the intersection e; & ey
of regular expressions (e.g. by !(le; | lea)). Also observe that e; ~ eg if and only if e; &ley and
ley &es are both regular expressions matching nothing. Therefore to determine equivalence of
regular expressions it suffices to determine emptiness of regular expressions. Again thanks to
the fact that regular expressions are equivalent to DFAs, the emptiness of a regular expression
can be determined by testing the emptiness of its corresponding DFA, which is easily solved
by testing the reachability from the initial state to all accept states. Putting it all together,
the procedure for determining whether e; ~ e, is as follows:

1. construct the corresponding DFAs a; and as of regular expressions e; &!es and le; & es;

2. for each accept state s of aq,
if it is reachable from the initial state sy of a1, then return false;

3. repeat the same for a,: for each accept state s of as,
if it is reachable from the initial state sy of ao, then return false;

4. return true.

30ne can actually regard the rules for Kleene star as a special case of the rules for ex e; with eo = empty
(and hence T' = {s}), which checks with intuition.

Peer Review ID: 67538562 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 67538562 — enter this when you fill out your peer evaluation via gradescope

Page 8

grammars based on the structure of e;:

F "x" matches s leaving & F”x"” matches s leaving {s'} F e matches s’ leaving S

I

- 7x" ey matches s leaving @’ F”x" ey matches s leaving S
F es matches s leaving S

F empty e, matches s leaving S’
F (e1 e2) | (¢} e2) matches s leaving S

I

F (e1 | €]) ea matches s leaving S
and for the remaining case ex ey, the rules are similar to those for Kleene star:3

I e matches s leaving S S =0,{s} I es matches s leaving T'
F ex eo matches s leaving T
ke matches s leaving S S # @,{s} & = Ly(S)
F e; matches s leaving T’

7}

F ex ey matches s’ leaving S’
F N(e & !(empty) & (s — ') ex e, matches s leaving S”
F ex ey matches s leaving TU S’ U S” '

Again similarly the main idea in the case ex e5 is that ex e is equivalent to es | ((s—5') ex e3) |
((e & !(empty) & (s — §')) ex e3) where s — ¢ is some match of e against s.

Exercise 4. [7 points]. The equivalence of regular expressions is decidable, using the
procedure below.

First of all note that it is valid to take the complement le of a regular expression e (e.g.
by flipping the accept/reject states of the corresponding deterministic finite-state automaton
(DFA), as regular expressions are equivalent to DFAs) and thus also the intersection e; & ey
of regular expressions (e.g. by !(le; | lea)). Also observe that e; ~ eg if and only if e; &ley and
ley &es are both regular expressions matching nothing. Therefore to determine equivalence of
regular expressions it suffices to determine emptiness of regular expressions. Again thanks to
the fact that regular expressions are equivalent to DFAs, the emptiness of a regular expression
can be determined by testing the emptiness of its corresponding DFA, which is easily solved
by testing the reachability from the initial state to all accept states. Putting it all together,
the procedure for determining whether e; ~ e, is as follows:

1. construct the corresponding DFAs a; and as of regular expressions e; &!es and le; & es;

2. for each accept state s of aq,
if it is reachable from the initial state sy of a1, then return false;

3. repeat the same for a,: for each accept state s of as,
if it is reachable from the initial state sy of ao, then return false;

4. return true.

30ne can actually regard the rules for Kleene star as a special case of the rules for ex e; with eo = empty
(and hence T' = {s}), which checks with intuition.

Peer Review ID: 67538562 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 67538562 — enter this when you fill out your peer evaluation via gradescope

Page 10

Exercise 5. [6 points]. By injecting print commands (with immediate flush) at proper
places, it can be observed that the (only) time-consuming module is Arith. There is hardly
any iteration between the DPLL solver and the theory solver for the last two included tests,
and most of the running time is consumed in a single call to the theory solver in Arith.
The poor performance is probably due to the fact that the implementation of Arith checks
satisfiability of formulae by brute-forcing all integers within some bounded range. As an
evidence, the simple satisfiable formula x = 0 && y = 0 && z = 0 also takes roughly as
long a time as the last two tests. Therefore, it is natural to choose to rewrite the Arith
module first.

One simple heuristic for improving the performance of Arith is to change the order in
which the integers are brute-forced. The order is somehow crucial as e.g. if the example
formula is modified to be x = -127 && y = -127 && z = -127 (where —127 is the first
value brute-forced in Arith), then the program indeed terminates instantly. Following an
intuition that a “natural” satisfiable formula tends to have solutions consisting of “small”
integers, one could consider an alternative order 0, +1,+2, ... for brute-forcing the integers,
which will yield “small” solutions faster. To remark this order is just intuitive and cannot
help with the worst-case performance. Furthermore one could also consider using some
convex/nonconvex optimization technique as a heuristic in the search for solutions, but
anyway this integer (even nonlinear!) programming problem is likely to be hard in general.

As is already mentioned, the Arith module checks satisfiability by brute-forcing all in-
tegers within some bounded range (in particular [—127,128]), which is incomplete and is
definitely a defect. For instance, it turns out that x = -128 && y = -128 && z = -128 is
considered unsatisfiable by Arith, which is obviously not the case.

Peer Review ID: 67538562 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 67538562 — enter this when you fill out your peer evaluation via gradescope

Page 12

