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Exercise 3F-1. Regular Expression, Large-Step

I e, matches s, leaving s,  F e, matches s, leaving s53

I e,e, matches s, leaving s3

F e, matches s, leaving s,

I ey |e; matches s, leaving s,

F e, matches s, leaving s,

I ey |e; matches s, leaving s,

F e* matches s; leaving s;

I e matches s; leaving s,  F e* matches s, leaving s3

F e* matches s; leaving s3

Exercise 3F-2. Regular Expression and Sets

We can't form operaitonal semantics rules for ex or e; e, given the current framework. The key
difference of such primary forms from those for which can construct operational semantics rules
(e.g." x ", empty, e;|ey) is that

1. They contain other primary forms as their sub-parts.
2. The input of one sub-part is taken from the output set of another sub-part.

Take e e, as an example, the input of ¢, is taken from the output set of e, so if we will have to
construct a rule, it will look like

I e, matches s; leaving S;  F e, matches s, leaving S, F s, € 5

F e,e, matches s, leaving S,

Unfortunately, this is incomplete, because s, is not able to capture all elements in S . Similarly
for e*, if we have to construct a rule, it would look like

F e matches s, leaving S;  F e matches s, leaving S, F s, € 5

I e+ matches s leaving S, U {s}

but this is incomplete too.
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Exercise 3F-1. Regular Expression, Large-Step

I e, matches s, leaving s,  F e, matches s, leaving s53

I e,e, matches s, leaving s3

F e, matches s, leaving s,

I ey |e; matches s, leaving s,

F e, matches s, leaving s,

I ey |e; matches s, leaving s,

F e* matches s; leaving s;

I e matches s; leaving s,  F e* matches s, leaving s3

F e* matches s; leaving s3

Exercise 3F-2. Regular Expression and Sets

We can't form operaitonal semantics rules for ex or e; e, given the current framework. The key
difference of such primary forms from those for which can construct operational semantics rules
(e.g." x ", empty, e;|ey) is that

1. They contain other primary forms as their sub-parts.
2. The input of one sub-part is taken from the output set of another sub-part.

Take e e, as an example, the input of ¢, is taken from the output set of e, so if we will have to
construct a rule, it will look like

I e, matches s; leaving S;  F e, matches s, leaving S, F s, € 5

F e,e, matches s, leaving S,

Unfortunately, this is incomplete, because s, is not able to capture all elements in S . Similarly
for e*, if we have to construct a rule, it would look like

F e matches s, leaving S;  F e matches s, leaving S, F s, € 5

I e+ matches s leaving S, U {s}

but this is incomplete too.
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Exercise 3F-3. Equivalence

Regular expression equivalence ¢; ~ ¢, is decidable, because a regular expression
equivalence can be reduced to DFA (Deterministic Finite Automaton) equivalence and DFA
equivalence is decidable.

We can translate a regular expression into an equivalent DFA by first translating it into an
equivalent NFA (Non-deterministic Finite Automaton) with Thompson's construction, and then
to DFA with subset construction algorithm. Now to show regular expression equivalence is
decidable, we only need to show that FDA equivalence is decidable.

Let A and B be two arbitrary DFA. A and B are equivalent if and only if A and B accept the
same strings up to length m % n, where m and n are the number of states in A and B. This is
because if A and B are not equivalent, they must output different results for some string of
length at most m * n. Since the number of strings of length up to m * n is finite, we can solve
this problem in finite amount of time. i.e. DFA equivalence is decidable.

Ref: https://cs.stackexchange.com/questions/92496/proving-that-dfa-equivalence-is-decidable

Exercise 3F-4. SAT Solving

The test 35 and 36 are slow because they have 3 variables while the rest of the test have at
most 2 variables. This matters a lot because in the given code, the arithmetic solver works in a
way that generates all possible combination of variables ranging from -127 to 128 and naively
checks all possible combinations against conditions. This means for a input with n variables, the
arithmetic solver takes O(256") times to execute.

The performance could be made much better if we rewrite the arithmetic solver into a linear
programming solver. Instead of sweeping through the whole variable space, we could focus on
just the intersections of functions defined by linear inequalities. We could further improve by
focusing on intersections that involves all the equalities. Take test case 26

(x> y)&&(y > 2)&&(z = 10)&&(x < 12) as an example: We know that the satisfying
model has to meets the condition z = 10, so we can focus only on three possible intersections:

1. The intersectionof x = y+ 1 andz = 10
2. Theintersectionof y =z + 1 andz = 10
3. Theintersectionof x = 12 — 1 and z = 10

We only need to check 256 # 3 cases in total, as compared to 256° case with the naive
implementation.
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We can translate a regular expression into an equivalent DFA by first translating it into an
equivalent NFA (Non-deterministic Finite Automaton) with Thompson's construction, and then
to DFA with subset construction algorithm. Now to show regular expression equivalence is
decidable, we only need to show that FDA equivalence is decidable.

Let A and B be two arbitrary DFA. A and B are equivalent if and only if A and B accept the
same strings up to length m % n, where m and n are the number of states in A and B. This is
because if A and B are not equivalent, they must output different results for some string of
length at most m * n. Since the number of strings of length up to m * n is finite, we can solve
this problem in finite amount of time. i.e. DFA equivalence is decidable.

Ref: https://cs.stackexchange.com/questions/92496/proving-that-dfa-equivalence-is-decidable

Exercise 3F-4. SAT Solving

The test 35 and 36 are slow because they have 3 variables while the rest of the test have at
most 2 variables. This matters a lot because in the given code, the arithmetic solver works in a
way that generates all possible combination of variables ranging from -127 to 128 and naively
checks all possible combinations against conditions. This means for a input with n variables, the
arithmetic solver takes O(256") times to execute.

The performance could be made much better if we rewrite the arithmetic solver into a linear
programming solver. Instead of sweeping through the whole variable space, we could focus on
just the intersections of functions defined by linear inequalities. We could further improve by
focusing on intersections that involves all the equalities. Take test case 26

(x> y)&&(y > 2)&&(z = 10)&&(x < 12) as an example: We know that the satisfying
model has to meets the condition z = 10, so we can focus only on three possible intersections:

1. The intersectionof x = y+ 1 andz = 10
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implementation.
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