Question assigned to the following page: 2

Peer Review ID: 310981486 — enter this when you fill out your peer evaluation via gradescope

All subsequent answers should appear after the first page of your submission and may be
shared publicly during peer review.

Exercise 3F-1. Regular Expression, Large-Step [10 points]. Here are the rules of

inference:
CONCATENATION

F e, matches s leaving s” F e, matches s” leaving s

F (e1e2) matches s leaving s

For the concatenation rule, we first ensure that e; is matched, leaving s”, and then ey is
matched, leaving s'.

Or-1 Or-2
F e; matches s leaving s’ I e; matches s leaving s’

F (e1|e2) matches s leaving s F (e1|ea) matches s leaving s

For the or case(]), we have two rules: when e; matches s,or similarly when e; matches s
leaving s'.
KLEENE-EMPTY KLEENE
- e matches s leaving s’ F e * matches s leaving s’

F e * matches s leaving s’ F e * matches s leaving s’

For the kleene star case, we may have ex match zero or more occurrences of e expressed
using the | operator.

Peer Review ID: 310981486 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 310981486 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-2. Regular Expression and Sets [5 points]. Here are the attempted
inference rules for concatenation and the Kleene Star.

CoNcAT
F e; matches s leaving S {F Vs’ € S}es matches s’ leaving S’

I e1es matches s leaving S’

KLEENE-1 KLEENE-2
F empty matches s leaving {s} F{V s’ € S}e* matches s leaving S’

F e * matches s leaving S’ F e * matches s leaving S’

The key restriction in this problem is having a finite and fixed set of hypotheses (for the
inference rules) given a language with infinite member string. Therefore, when we use Vto
quantify over the strings in the set of permissible strings, we do not necessarily guarantee
that the inference rules have finite and fixed set of hypotheses. Both of these clash with the
exercise’s rule that each inference rule must have a fized and finite number of premises, and
cannot embed existential /universal quantification or set-building in the rule itself.

The challenge arises with the constructs of concatenation (ejez) and Kleene star (ex).
Each of these can potentially match infinitely many prefixes of a given string s, and so we
would need rules that somehow collect all possible remainders in a single inference step—yet
the exercise forbids placing set-comprehensions or unbounded quantifications in the premises
or conclusion. This limitation makes it impossible to write finite-premise rules that correctly
and completely describe the semantics of concatenation and Kleene star.

To see why, consider concatenation: we would need to capture all pairs of matches
(s € S1,8" € §") where 5] is the set of leftovers from matching e; and Sy is the set of
leftovers from then matching es. A single finite rule with no set-comprehension cannot do
this. Similarly, Kleene star demands potentially repeated matches of e and an aggregation
of suffixes from all possible ways of iterating. Expressing that within a single inference
step—without “looping back” or enumerating an unbounded set of cases—cannot be done.
Thus, under the imposed constraints, no system of rules can be both finite-premise and yield
all suffix sets deterministically for those two operators.

Peer Review ID: 310981486 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 310981486 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-3. Equivalence [7 points]. I believe that e; ~ e, is decidable for this lan-
guage of regular expressions. For a regular expression e, the set of all possible "remainders”
after matching a prefix of s is determined exactly by the set of all prefixes that e can match.

Let Sc(s) denote the set of all suffixes, given by the set {ss | s = s, 11 55 A's, € L(e)},
where s, & s, denote the suffix and prefix respectively and L(e) is the language of regular
expression e.

Requiring S.(s) = Sy(s) for every string s is equivalent to the notion of being able to
split every string s = uv, such that u € L(e) <= wu € L(d). So, then the condition:
€1 ~ €6y < L(el) = L(eg).

So we can follow this procedure:

o Convert each e; to an NFA (nondeterministic finite automaton).

o Convert cach NFA to a DFA (deterministic finite automaton) by the subset construc-
tion.

o Minimize each DFA (or else compare them without explicit minimization, using a
standard graph-product approach).

o Check language equivalence of the two resulting DFAs (for instance, by checking
whether their symmetric difference accepts any string).

So, we can do this in polynomial time in the sizes of the NFA/DFA making it decidable.

Peer Review ID: 310981486 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 310981486 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-4. SAT Solving [6 points]. The slow performance of these test cases
reveals fundamental inefficiencies in the DPLL(T) implementation. The current architecture
follows a naive ”check-and-backtrack” approach where the SAT solver generates complete
assignments before consulting the theory solver. This means the SAT solver might explore
many theory-inconsistent assignments before finding a valid solution. The test cases (x > y)
&& (y > z) && (z = 10) && (x < 13/12) are particularly challenging because they combine
transitive arithmetic relationships with tight numerical bounds, creating a large search space
that the current implementation must explore exhaustively.

The most serious issue lies in the arithmetic theory solver (arith.ml), which uses a
brute-force enumeration approach to find satisfying assignments. For each variable, it tries
every possible value within the bounded range [-127, 128], leading to exponential complexity
0(256™) where n is the number of variables. This approach completely ignores the structure
of the arithmetic constraints and fails to employ any form of constraint propagation or early
pruning.

Instead of waiting for the SAT solver to propose assignments, the arithmetic solver should
proactively propagate constraints (e.g., deducing x > 10 from z = 10). Additionally, it
should perform stronger transitive reasoning (i.e., if x > y and y > z, then immediately
infer x > z), reducing the number of Boolean branches that need to be explored. Another
key optimization is early conflict detection—for example, if x < 12 is added but x > 12 has
already been derived, the solver should immediately return UNSAT, avoiding wasted search
effort.

Peer Review ID: 310981486 — enter this when you fill out your peer evaluation via gradescope

