Questions assigned to the following page: 3 and 2

Peer Review ID: 311007469 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-1. Regular Expression, Large-Step [10 points].
For concatenation eje;, we have one rule that ensures e; matches s and e, matches the
resulting s':

F e; matches s leaving s’ ey matches s leaving s”
F e1eo matches s leaving s”

For e;|es, we need two rules. If either of e; or e; matches s, we can say e |e; matches s:

F e; matches s leaving s’ F es matches s leaving s
F e1|ea matches s leaving s F e1|es matches s leaving s

For ex, we also need two rules. Notably, ex matches even with 0 occurrences of e:

F e x matches s leaving s

In the other case, we can take a recursive approach as ex matches with as many occur-
rences of e as possible:

F e matches s leaving s | e * matches s’ leaving s”
F e x matches s leaving s”

Exercise 3F-2. Regular Expression and Sets [5 points].

Rule for ejes:
F e; matches s leaving S F ey matches s leaving S’

- e1es matches s leaving {s”|s' € S, s” € S}

Rules for ex:

F e matches s leaving S e x matches s’ leaving S’
F e x matches s leaving {s} F e x matches s leaving {s"|s’ € S,s" € 5’}

Peer Review ID: 311007469 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 5 and 4

Peer Review ID: 311007469 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-3. Equivalence [7 points].
We can show that e; ~ ey is undecidable by reducing from the halting problem. Given a
Turing machine M and input z, we want to choose some regular expressions e; and ey such
that if M halts on z, then e; ~ e3 does not hold, and if M does not halt on x, then e; ~ e,
holds.

Let us construct two regular expressions e, es as so:

e Let e; be a regular expression that matches a string of the computational steps of M
on x, which includes a halt condition if it exists.

e Let e be a regular expression that also matches a string of the computational steps of
M on x, but without any existing halt conditions.

With these definitions, we can see that if M halts on x, then e; will match a string with
a halt, while e will not. Therefore, e; ~ e5 does not hold. Conversely, if M does not halt on
x, then both e; and ey will match the same strings, both of which contain no halt condition.
Therefore, e; ~ es holds.

We have shown that if e; ~ ey were to be decidable, then the halting problem would as
well. As the halting problem is undecidable, we have proven that e; ~ e is undecidable as
well.

Exercise 3F-4. SAT Solving [6 points].

The last two tests take a comparatively long time because the variables are dependent on
each other, and as a result, each constraint results in several propagations. In the example of
the test cases, once z = 10 is assigned, unit propagation also results in y > 10, x > 10, and
so forth. Because of this, I think it would be best to revise the handle_unit_clauses function
in dpll.ml, which handles unit propagation. Rather than the recursive approach given by
handle_unit_clauses, an iterative approach that iterates over the clauses and handles unit
propagation could be used instead. This could increase efficiency and prevent deep recursive
stacks, particularly in situations that require extensive unit propagation such as the last two
tests.

Peer Review ID: 311007469 — enter this when you fill out your peer evaluation via gradescope

