13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68554522 — enter this when you fill out your peer evaluation via gradescope

Page 3

Advanced Programming Languages
Homework Assignment 3F and 3C

Mollie Bakal (bakalm)
3/6/21

Logistics. You must work alone. Your name and Michigan email address must appear on
the first page of your PDF submission but may not appear anywhere else. This is to protect
your identity during peer review. The first page of your submission is not shared during
peer view but all subsequent pages are.

Exercise 3F-1. Bookkeeping [2 points]. These answers should appear on the first page
of your submission and are kept private.

1. Indicate in a sentence or two how much time you spent on this homework.

2. Indicate in a sentence or two how difficult you found it subjectively.

Answers to Bookkeepping Time spent varies—I spent a good chunk of a 20-hour round-
trip drive thinking about this, but also mentally wandering off and revisiting the same
thoughts and staring at Pennsylvania. Let’s go with 30 hours outside the trip, plus or minus
57 I found the formal part more difficult than the other homeworks; I am not always the
best at intuiting whether or not something is provable, so I vacillated between ”it’s trivially
possible to write rules of inference like this for 3f-3, this is definitely deterministic” and
"it’s trivially impossible to write those rules, it needs to recurse with a non-fixed number of
hypotheses” for way too long.

1

Peer Review ID: 68554522 — enter this when you fill out your peer evaluation via gradescope

All subsequent answers should appear after the first page of your submission and may be
shared publicly during peer review.

Exercise 3F-1. Regular Expression, Large-Step [10 points]. Regular Expressions
are commonly used as abstractions for string matching. Here is an abstract grammar for
regular expressions:

e = "% singleton — matches the character x
| empty skip — matches the empty string
| el e concatenation — matches e; followed by e,
| e1]es or — matches e; or es
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

| [’x” —7y”] matches any character between X and y inclusive
| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The last four
cases can be defined in terms of the first five. We also give an abstract grammar for strings
(modeled as lists of characters):

s = nil empty string

| 7x” s string with first character X and other characters s

We write "bye” as shorthand for "b” :: 7y” :: 7e” :: nil. This exercise requires you to give
large-step operational semantics rules of inference related to regular expressions matching
strings. We introduce a judgment:

e matches s leaving s’

The interpretation of the judgment is that the regular expression e matches some prefix of
the string s, leaving the suffix s’ unmatched. If s’ = nil then r matched s exactly. Examples:

- ”h"("e”+) matches "hello” leaving "110”

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

= ("h” | 7e”)* matches "hello” leaving “ello”
= ("h” | 7e”)* matches "hello” leaving “hello”
= ("h” | 7e”)* matches "hello” leaving 71l0”

Here are two rules of inference:

s="x" ¢

F”x” matches s leaving s F empty matches s leaving s

Give large-step operational semantics rules of inference for the other three primal regular
expressions.

2

Peer Review ID: 68554522 — enter this when you fill out your peer evaluation via gradescope

Answer

el matches s, leaving s €2 matches s, leaving s, s=sl:s2:¢
I ele2 matches s leaving s’

el matches s leaving s,; €2 matches s leaving s, s=s2: 5,
 elle2 matches s leaving s,

or
: / & / S -
el matches s leaving s, €2 matches s leaving s, s=sl: s,

- el|e2 matches s leaving s/,

e * matches s leaving s

or
e matches s leaving s” e * matches s” leaving s s=5s"::5"

F e x matches s leaving s’

Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F7x” matches s leaving {s' | s ="x" 1 &'} F empty matches s leaving {s}

I e; matches s leaving S ey matches s leaving S’
Fe1 | e; matches s leaving SU S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and eje;. You may not place
a derivation inside a set constructor, as in: {x | Jy. F e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

3

Peer Review ID: 68554522 — enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68554522 — enter this when you fill out your peer evaluation via gradescope

Page 7

Answer

el matches s, leaving s €2 matches s, leaving s, s=sl:s2:¢
I ele2 matches s leaving s’

el matches s leaving s,; €2 matches s leaving s, s=s2: 5,
 elle2 matches s leaving s,

or
: / & / S -
el matches s leaving s, €2 matches s leaving s, s=sl: s,

- el|e2 matches s leaving s/,

e * matches s leaving s

or
e matches s leaving s” e * matches s” leaving s s=5s"::5"

F e x matches s leaving s’

Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F7x” matches s leaving {s' | s ="x" 1 &'} F empty matches s leaving {s}

I e; matches s leaving S ey matches s leaving S’
Fe1 | e; matches s leaving SU S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and eje;. You may not place
a derivation inside a set constructor, as in: {x | Jy. F e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

3

Peer Review ID: 68554522 — enter this when you fill out your peer evaluation via gradescope

Answer This is impossible in the given framework, with the fixed and finite hypotheses—
the Kleene star has some finite number of iterations for every non-empty match, as strings are
finite and every non-empty match expression must match some combination of characters,
removing at least one character from the string; eventually, either the nil string will be left or
some combination of characters which the Kleene star cannot match. However, the number
of iterations of that which must be run are unknown, because this has a tree structure, so
the number of hypotheses are not set. Here is what some bad, non-recursive rules could look

like. _
e matches s leaving {s'}

I ex matches s leaving {s'}
This is incomplete: it only matches the outermost, and does not match repeats. Similarly,
an el e2 rule which has a fixed number of hypotheses in s; after el to reason about would

not be able to reason about e2. _
el matches s, leaving {s}} €2 matches s/ leaving {s}}

- ele2 matches s leaving {s'|s' = s,}

An attempt at functional rules for el e2 and e* is below:
el matches s; leaving {s|} €2 matches s, leaving {s,}

- ele2 matches s leaving {s'|s' = s}, iffs;in {s]}}

- empty* matches s leaving {s}
e matches s leaving {s'}

I ex matches s leaving e x {5}

Exercise 3F-3. Equivalence [7 points]. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ ¢ iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ey iff Vs € S. I e; matches s leaving S; A F ey matches s leaving Sy —>
S1 = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ e is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

Answer I believe that this is possible—unlike possible sequences of IMP commands, strings
are finite. The e* command is analogous to the while loop in that it is the only command
which can produce itself in its output, causing a loop from a finite input in IMP; however,
as the string is finite, if we use my suggested rule to short-circuit empty* all other Kleene
star matches and expressions must terminate. We can show equality in the same way that
IMP would; structural induction on derivations should work the same way.

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given DPLL-style

4

Peer Review ID: 68554522 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68554522 — enter this when you fill out your peer evaluation via gradescope

Page 10

Answer This is impossible in the given framework, with the fixed and finite hypotheses—
the Kleene star has some finite number of iterations for every non-empty match, as strings are
finite and every non-empty match expression must match some combination of characters,
removing at least one character from the string; eventually, either the nil string will be left or
some combination of characters which the Kleene star cannot match. However, the number
of iterations of that which must be run are unknown, because this has a tree structure, so
the number of hypotheses are not set. Here is what some bad, non-recursive rules could look

like. _
e matches s leaving {s'}

I ex matches s leaving {s'}
This is incomplete: it only matches the outermost, and does not match repeats. Similarly,
an el e2 rule which has a fixed number of hypotheses in s; after el to reason about would

not be able to reason about e2. _
el matches s, leaving {s}} €2 matches s/ leaving {s}}

- ele2 matches s leaving {s'|s' = s,}

An attempt at functional rules for el e2 and e* is below:
el matches s; leaving {s|} €2 matches s, leaving {s,}

- ele2 matches s leaving {s'|s' = s}, iffs;in {s]}}

- empty* matches s leaving {s}
e matches s leaving {s'}

I ex matches s leaving e x {5}

Exercise 3F-3. Equivalence [7 points]. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ ¢ iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ey iff Vs € S. I e; matches s leaving S; A F ey matches s leaving Sy —>
S1 = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ e is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

Answer I believe that this is possible—unlike possible sequences of IMP commands, strings
are finite. The e* command is analogous to the while loop in that it is the only command
which can produce itself in its output, causing a loop from a finite input in IMP; however,
as the string is finite, if we use my suggested rule to short-circuit empty* all other Kleene
star matches and expressions must terminate. We can show equality in the same way that
IMP would; structural induction on derivations should work the same way.

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given DPLL-style

4

Peer Review ID: 68554522 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68554522 — enter this when you fill out your peer evaluation via gradescope

Page 12

CNF SAT solver with the given theory of bounded arithmetic. In particular, you must
update only the Main.solve function. Your updated solver must be correct. This notably
implies that it must correctly handle all of the included test cases — we use diff for some
testing, but if you change only the listed method you should end up with the same answers
as the reference.
In addition, create an example “tricky” input that can be parsed by our test harness.
Submit your .ml and .input files.

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

Answer The last two tests rely primarily on the theory-checker, and not as much on the
more-efficient CNF solver. While SAT is undecidable, the DPLL algorithm usually solves it
pretty quickly in practical cases. However, DPLL(T) must call the theory solver after the
CNF is run if there are any theory (arithmetic) clauses which may be unsatisfied with the
model. In this specific case, this theory-checker is heavily inefficient; it gathers all variables
in clauses which it needs to check, then evaluates the model to check every value for every
variable until it accepts within the range, from -127 to 128. With three variables, we need to
check up to 256 values against the model-if all of them return true, then we break by raising
an exception, but it may take up to that long. To fix the arithmodel module, we could try
constraining the values which we check with. Instead of starting at -127, if an arithmetic
clause must be true and has an equality operator, we could start by setting that variable
to what it must be equal to. That would save a number of loop iterations. Similarly, if a
variable is constrained by a ”>" or ”<” relation to a number or another variable, it could
begin checking validity at that lower or upper bound, respectfully, and save time checking.

I also believe the code might have a defect relating to evaluation of the model. When
[ran a variant of test case 27, which was just (x * x == 25), I got back that a satisfiable
result was x = -127. [am not certain where this happens; the constraint appears to work:
((x) * (x)) = (25) and the function for evaluating the arithmetic model appears robust—I
believe it has to do with the recursive bounded search removing the variable, although I am
not sure.

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

5

Peer Review ID: 68554522 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68554522 — enter this when you fill out your peer evaluation via gradescope

Page 14

