13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope

Page 3



Exercise 3F-1. Regular Expression, Large-Step [10 points]. Regular Expressions
are commonly used as abstractions for string matching. Here is an abstract grammar for
regular expressions:

e = "% singleton — matches the character X
| empty skip — matches the empty string
| e e concatenation — matches e; followed by e
| e ] e or — matches e; or e
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

| [’x” —”y”] matches any character between X and y inclusive
| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The last four
cases can be defined in terms of the first five. We also give an abstract grammar for strings
(modeled as lists of characters):

s u= nil empty string

’ 7 &7

x” 1 s string with first character X and other characters s

We write "bye” as shorthand for "b” :: ”y” :: 7e” :: nil. This exercise requires you to give
large-step operational semantics rules of inference related to regular expressions matching

strings. We introduce a judgment:
e matches s leaving s’

The interpretation of the judgment is that the regular expression e matches some prefix of
the string s, leaving the suffix s’ unmatched. If s’ = nil then » matched s exactly. Examples:

F7h”(”e”+) matches "hello” leaving "110”

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

F ("h” | 7e”)* matches "hello” leaving "ello”
F ("h” | ”e”)* matches "hello” leaving “hello”
F ("h” | 7e”)* matches "hello” leaving 7110”

Here are two rules of inference:

Wem®' on wl

§="%"ns
F 7x” matches s leaving s’ F empty matches s leaving s

Give large-step operational semantics rules of inference for the other three primal regular
expressions.

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope



F e; matches s leaving s+ e matches s leaving s”
F e, eo matches s leaving s”

concat

F e; matches s leaving s
e | e2 matches s leaving s

F e; matches s leaving s
e | e2 matches s leaving s

Kleenel

F e x matches s leaving s

- e matches s leaving s F e *x matches s’ leaving s”

: Kleene2
F e x matches s leaving s”

Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F ”x” matches s leaving {s' | s ="x" :: §'} - empty matches s leaving {s}

F e; matches s leaving S F e; matches s leaving S’
F ey | ea matches s leaving SU S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and e;e,. You may not place
a derivation inside a set constructor, as in: {x | Jy. F e matches x leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope



2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope

Page 6



F e; matches s leaving s+ e matches s leaving s”
F e, eo matches s leaving s”

concat

F e; matches s leaving s
e | e2 matches s leaving s

F e; matches s leaving s
e | e2 matches s leaving s

Kleenel

F e x matches s leaving s

- e matches s leaving s F e *x matches s’ leaving s”

: Kleene2
F e x matches s leaving s”

Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F ”x” matches s leaving {s' | s ="x" :: §'} - empty matches s leaving {s}

F e; matches s leaving S F e; matches s leaving S’
F ey | ea matches s leaving SU S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and e;e,. You may not place
a derivation inside a set constructor, as in: {x | Jy. F e matches x leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope



Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

This unfortunately can’t be done with the rules in place. Without nesting derivations in

set constructors, there is no way to carry on work done by a prior operation as is required
in the concatenation operation. Consider the following attempted derivations:

F e; matches s leaving S+ e matches S leaving S' = {s'|ds € S I e5 matches s leaving s’}

F e, es matches s leaving S’

The above rule for concatenation unfortunately needs to use a derivation inside of a set
constructor. We need some way to build off all of the work done by the first expression string
by string.

- e; matches s leaving S F es matches s leaving S’}

F e, eo matches s leaving SN S’

This rule for concatenation does not need a derivation inside of the set constructor!
Unfortunately, the result will be incorrect as we are only able to check if both el and e2
match s, but not in succession.

Exercise 3F-3. Equivalence [7 points|. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ co for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ ¢ iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ey iff Vs € S. F e; matches s leaving S; A F ey matches s leaving Sy —>
S1 = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ e is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

We can show that e; ~ e; is undecidable by reducing it to the halting problem. We assume
that there is a decider function for e; ~ e, that runs in polynomial time and terminates called
ISEQU AL(ey, e5) which returns true if e; ~ e5 and false otherwise. We then construct the
following functions:

helper(h):

h();

return 7 X”;
This function takes in a program h and runs h, waiting for it to terminate, before returning
the regular expression ”X” which matches the character X.

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope



3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope

Page 9



Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

This unfortunately can’t be done with the rules in place. Without nesting derivations in

set constructors, there is no way to carry on work done by a prior operation as is required
in the concatenation operation. Consider the following attempted derivations:

F e; matches s leaving S+ e matches S leaving S' = {s'|ds € S I e5 matches s leaving s’}

F e, es matches s leaving S’

The above rule for concatenation unfortunately needs to use a derivation inside of a set
constructor. We need some way to build off all of the work done by the first expression string
by string.

- e; matches s leaving S F es matches s leaving S’}

F e, eo matches s leaving SN S’

This rule for concatenation does not need a derivation inside of the set constructor!
Unfortunately, the result will be incorrect as we are only able to check if both el and e2
match s, but not in succession.

Exercise 3F-3. Equivalence [7 points|. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ co for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ ¢ iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ey iff Vs € S. F e; matches s leaving S; A F ey matches s leaving Sy —>
S1 = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ e is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

We can show that e; ~ e; is undecidable by reducing it to the halting problem. We assume
that there is a decider function for e; ~ e, that runs in polynomial time and terminates called
ISEQU AL(ey, e5) which returns true if e; ~ e5 and false otherwise. We then construct the
following functions:

helper(h):

h();

return 7 X”;
This function takes in a program h and runs h, waiting for it to terminate, before returning
the regular expression ”X” which matches the character X.

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope



haltingSolver(h):

return ISEQUAL(”X” helper(h));
Where haltingSolver returns whatever ISEQUAL returns when passed in the regular expres-
sion "X” and the output of helper(h).

We see that ISEQUAL(”X” helper(h)) will return true if the result of helper(h) is an equiv-
alent regular expression to "X”. We see that this definitely be the case if helper(h) return
?X” which can only happen if h halts. If h does not halt, then nothing will be returned
by helper(h) which means ISEQUAL(”X” helper(h)) will return false. Thus, we have con-
structed a solver for the halting problem for any program input h. We know this program
runs in polynomial time since e; ~ es is assumed to be a decidable property so we have an
efficient decider for the halting problem. Unfortunately, we know the halting problem is un-
decidable which means the formulated haltingSolver cannot exist which means that there is
no such ISEQUAL program that can decide if e; ~ e; meaning this property is undecidable.

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given DPLL-style
CNF SAT solver with the given theory of bounded arithmetic. In particular, you must
update only the Main.solve function. Your updated solver must be correct. This notably
implies that it must correctly handle all of the included test cases — we use diff for some
testing, but if you change only the listed method you should end up with the same answers
as the reference.

In addition, create an example “tricky” input that can be parsed by our test harness.

Submit your .ml and .input files.

Submitted to Autograder!

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

The problem with the implementation here is that the theory solver is doing a brute force
search to solve equations using values from -127 to 128. The problem with this, especially
when there are arithmetic expressions with multiple variables (x, y, and z), the solver will
perform a back tracking search in O(256™) time where n is the number of variables present.
That is absolutely ridiculous and we can do a lot of better things (probably). I would rewrite
the arithmetic solver module by using a more efficient LP solver (at least one that runs in
polynomial time).

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope



4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope

Page 12



haltingSolver(h):

return ISEQUAL(”X” helper(h));
Where haltingSolver returns whatever ISEQUAL returns when passed in the regular expres-
sion "X” and the output of helper(h).

We see that ISEQUAL(”X” helper(h)) will return true if the result of helper(h) is an equiv-
alent regular expression to "X”. We see that this definitely be the case if helper(h) return
?X” which can only happen if h halts. If h does not halt, then nothing will be returned
by helper(h) which means ISEQUAL(”X” helper(h)) will return false. Thus, we have con-
structed a solver for the halting problem for any program input h. We know this program
runs in polynomial time since e; ~ es is assumed to be a decidable property so we have an
efficient decider for the halting problem. Unfortunately, we know the halting problem is un-
decidable which means the formulated haltingSolver cannot exist which means that there is
no such ISEQUAL program that can decide if e; ~ e; meaning this property is undecidable.

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given DPLL-style
CNF SAT solver with the given theory of bounded arithmetic. In particular, you must
update only the Main.solve function. Your updated solver must be correct. This notably
implies that it must correctly handle all of the included test cases — we use diff for some
testing, but if you change only the listed method you should end up with the same answers
as the reference.

In addition, create an example “tricky” input that can be parsed by our test harness.

Submit your .ml and .input files.

Submitted to Autograder!

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

The problem with the implementation here is that the theory solver is doing a brute force
search to solve equations using values from -127 to 128. The problem with this, especially
when there are arithmetic expressions with multiple variables (x, y, and z), the solver will
perform a back tracking search in O(256™) time where n is the number of variables present.
That is absolutely ridiculous and we can do a lot of better things (probably). I would rewrite
the arithmetic solver module by using a more efficient LP solver (at least one that runs in
polynomial time).

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope



Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

I believe a defect here that could cause problems is the fact that the CNF solver can map
the same arithmetic expressions to different temporary booleans.

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope



5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68520746 — enter this when you fill out your peer evaluation via gradescope

Page 15



