Question assigned to the following page: 2

Peer Review ID: 311013226 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-1. Regular Expression, Large-Step
[10 points].
Concatenation:

F e; matches s leaving s’ I ez matches s’ leaving s”
- e1ex matches s leaving s”

OR: )
 e; matches s leaving s’

F e1]|e2 matches s leaving s’

F es matches s leaving s’
F e1]|e2 matches s leaving s/

Kleene Star:
F e* matches s leaving s

F e matches s leaving s’ F e* matches s’ leaving s”
F e* matches s leaving s”

Peer Review ID: 311013226 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 3

Peer Review ID: 311013226 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-2. Regular Expression and Sets [5
points].

It does not appear to be possible to define rules of inference for ex or ele2
to deterministically capture all suffices. This is because the Kleene star and
concatenation patterns either need to use a set constructor to quantify their
premises to capture all possibilities. The attempts below show failed attempts
for the Kleene star, but a concatenation attempt also fails for a similar reason
because we either need to use an infinite set of hypothesis to capture all of the
leftovers, or we need to use a set-comprehension in the conclusion.

Attempt 1 (Kleene star) Base case to capture 0 occurrences of e:

F e* matches s leaving { s}

The recursive case is intended to capture cases where e matches at least once,
leaving a set of possible suffices S’. The second premise attempts to apply ex
to the string again to capture repeated matches of e. Then the conclusion takes
the union of these sets.

F e matches s leaving S’ F e* matches s leaving S”

F e* matches s leaving S’ U S”

By the rule defined for us, the set of S’ will represent all the single matches of
e in s. However, in the second predicate, S” will use the base rule to simply
leave a set consisting of s. This does not capture all of the multiple matches for
multiple instances of the pattern e so it is incomplete because it does not use
the leftovers, (the set S”).

Attempt 2 (Kleene star) We use the same base case as defined above in
attempt 1, but adjust our recursive case to attempt to use the leftovers:

F e matches s leaving S’ F e* matches s’ leaving S”

F e* matches s leaving S’ U S”

However, in this case our second predicate only matches a single suffix s’, where
s’ € §’. This means that again we are missing some of the leftover elements
in S, and this is incomplete. We would like to add an additional premise that
captures the idea of using every leftover in S’, but that would either require
infinitely many premises (one for each s’, recursively matching the 0 instance)
or a set-comprehension in the conclusion which is prohibited.

Peer Review ID: 311013226 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 4

Peer Review ID: 311013226 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-3. Equivalence [7 points].

Equivalence for regular expressions is decidable. Since every regular expression
corresponds to a finite automaton, we can construct a finite state machine that
tracks the set of possible leftover suffixes for each input string. Comparing
two regular expressions then reduces to checking whether their corresponding
automata induce the same function from inputs to suffix sets. Since this can be
done algorithmically in finite time, equivalence is decidable.

Peer Review ID: 311013226 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 5

Peer Review ID: 311013226 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-4. SAT Solving [6 points].

The last two tests are:
(z>y) & (y>2) & (2=10) & (z<12)

and
(z>y) & (y>2) & (2=10) & (z < 13)

These test cases each have three arithmetic variables and nested constraints,
where the value of x depends on the value of y and the value of y depends on
the value of z. DPLL(T) solvers extend the DPLL algorithm, which handles pure
boolean logic, to also handle integer arithmetic. DPLL uses optimizations such
as simplifying unit clauses that contain only a single literal and identifying pure
variables that are always or never true to simplify boolean problems. DPLL(T)
converts integer and mixed constraints to boolean constraints, but does not
use pure variable elimination and alters unit propagation. This means that the
DPLL(T) solver can fix z = 10, removing one degree of freedom, but still y > 10
and x > y > 10. Unlike pure boolean constraints, y and z still have multiple
choices which must be tested explicitly. Ideally, the solver would use z = 10
to filter impossible values for x and y, but then it would still need to check for
a quadratic number of possibilities by testing all values of y > 10 and then all
values > y. This search process increases the time to solve these constraints
compared to pure boolean formulas or formulas without nested constraints.

The module that is key for implementing the solver is in arith.ml. In
its current implementation, it uses a brute force approach to try all possible
values in a naive manner. One optimization is constraint propagation where
we filter out impossible values before looping through assignments. In the case
of z > y > 10, we would not bother trying values of y < 10 or < 11. This
reduces the search space for possible satisfiable values.

Another implementation we could implement is choosing the variable with
the smallest feasible range first. In the first test case shown, x has no feasible
values, so we should immediately return unsatisfiable. In the second, z’s only
feasible values is 12, which can drastically reduce the search space.

Other optimizations could also be implemented, but these two should dra-
matically improve the performance compared to the current brute force ap-
proach.

Peer Review ID: 311013226 — enter this when you fill out your peer evaluation via gradescope



