13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68522846 — enter this when you fill out your peer evaluation via gradescope

Page 3



Exercise 3F-2. Regular Expression, Large-Step [10 points]. The large step opera-
tional semantics for concatenation, or, and Kleene star of regular expressions are as follows.

F e; matches s leaving ' e matches s’ leaving s”

F ei1es matches s leaving s”

F e; matches s leaving s

k- e1]e2 matches s leaving s’

F e matches s leaving s

k- e1]e2 matches s leaving s’

F e* matches s leaving s

F e matches s leaving s F e* matches s’ leaving s”

F e* matches s leaving s”

Exercise 3F-3. Regular Expression and Sets [5 points]. ejes cannot be expressed
with the given framework. You could try to do:

F e; matches s leaving S F es matches S leaving S’

F ejes matches s leaving S’

However, S is a set, so you would need a judgement that matches all strings in a set and
leaves a set, which isn’t provided in the framework. Similarly for e*, you could try to do:

F e matches s leaving S F e* matches S leaving S’

F e* matches s leaving S’
but you run into the same problem. Thus, both of these rules are incomplete.

Exercise 3F-4. Equivalence [7 points|. Assume that e; ~ ey is decidable. Then we
can define an algorithm isEquivalent(e;, e3) that takes two regular expressions and returns
true if they are equivalent and false if anything else happens. This algorithm must return
in finite time by the definition of an algorithm. Next, define the following program that
executes someCode then returns a regular expression:

function getRegExpr (someCode) :
someCode ()
return e

Now we call isEquivalent and pass in code that solves the halting problem.
isEquivalent (getRegExpr (haltingProblemInput), getRegExpr (haltingProblemInput))

Since isEquivalent must return in finite time, this means that the halting problem was
solved. This is impossible, so e; ~ ey is undecideable.

Peer Review ID: 68522846 — enter this when you fill out your peer evaluation via gradescope



2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68522846 — enter this when you fill out your peer evaluation via gradescope

Page 5



Exercise 3F-2. Regular Expression, Large-Step [10 points]. The large step opera-
tional semantics for concatenation, or, and Kleene star of regular expressions are as follows.

F e; matches s leaving ' e matches s’ leaving s”

F ei1es matches s leaving s”

F e; matches s leaving s

k- e1]e2 matches s leaving s’

F e matches s leaving s

k- e1]e2 matches s leaving s’

F e* matches s leaving s

F e matches s leaving s F e* matches s’ leaving s”

F e* matches s leaving s”

Exercise 3F-3. Regular Expression and Sets [5 points]. ejes cannot be expressed
with the given framework. You could try to do:

F e; matches s leaving S F es matches S leaving S’

F ejes matches s leaving S’

However, S is a set, so you would need a judgement that matches all strings in a set and
leaves a set, which isn’t provided in the framework. Similarly for e*, you could try to do:

F e matches s leaving S F e* matches S leaving S’

F e* matches s leaving S’
but you run into the same problem. Thus, both of these rules are incomplete.

Exercise 3F-4. Equivalence [7 points|. Assume that e; ~ ey is decidable. Then we
can define an algorithm isEquivalent(e;, e3) that takes two regular expressions and returns
true if they are equivalent and false if anything else happens. This algorithm must return
in finite time by the definition of an algorithm. Next, define the following program that
executes someCode then returns a regular expression:

function getRegExpr (someCode) :
someCode ()
return e

Now we call isEquivalent and pass in code that solves the halting problem.
isEquivalent (getRegExpr (haltingProblemInput), getRegExpr (haltingProblemInput))

Since isEquivalent must return in finite time, this means that the halting problem was
solved. This is impossible, so e; ~ ey is undecideable.

Peer Review ID: 68522846 — enter this when you fill out your peer evaluation via gradescope



3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68522846 — enter this when you fill out your peer evaluation via gradescope

Page 7



Exercise 3F-2. Regular Expression, Large-Step [10 points]. The large step opera-
tional semantics for concatenation, or, and Kleene star of regular expressions are as follows.

F e; matches s leaving ' e matches s’ leaving s”

F ei1es matches s leaving s”

F e; matches s leaving s

k- e1]e2 matches s leaving s’

F e matches s leaving s

k- e1]e2 matches s leaving s’

F e* matches s leaving s

F e matches s leaving s F e* matches s’ leaving s”

F e* matches s leaving s”

Exercise 3F-3. Regular Expression and Sets [5 points]. ejes cannot be expressed
with the given framework. You could try to do:

F e; matches s leaving S F es matches S leaving S’

F ejes matches s leaving S’

However, S is a set, so you would need a judgement that matches all strings in a set and
leaves a set, which isn’t provided in the framework. Similarly for e*, you could try to do:

F e matches s leaving S F e* matches S leaving S’

F e* matches s leaving S’
but you run into the same problem. Thus, both of these rules are incomplete.

Exercise 3F-4. Equivalence [7 points|. Assume that e; ~ ey is decidable. Then we
can define an algorithm isEquivalent(e;, e3) that takes two regular expressions and returns
true if they are equivalent and false if anything else happens. This algorithm must return
in finite time by the definition of an algorithm. Next, define the following program that
executes someCode then returns a regular expression:

function getRegExpr (someCode) :
someCode ()
return e

Now we call isEquivalent and pass in code that solves the halting problem.
isEquivalent (getRegExpr (haltingProblemInput), getRegExpr (haltingProblemInput))

Since isEquivalent must return in finite time, this means that the halting problem was
solved. This is impossible, so e; ~ ey is undecideable.

Peer Review ID: 68522846 — enter this when you fill out your peer evaluation via gradescope



4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68522846 — enter this when you fill out your peer evaluation via gradescope

Page 9



Exercise 3F-5. SAT Solving [6 points]. The last two included tests take a much longer
time than the other tests because they have three arithmetic variables, whereas the other
tests have at most two. The arithmetic solver tries assignments of every integer from -127
to 128 inclusive, so there are 256 possible assignments per arithmetic variable. This makes
the complexity of the solver O(256™), where n is the number of arithmetic variables. Thus,
as the number of arithmetic variables grows, the running time of the arithmetic solver grows
very quickly, and it starts to become noticeable when there are three. To improve this, we
could change the bounded search module to plot the constraints in Cartesian coordinates
and use hill-climbing to check the local maximums of the area that satisfies all constraints.
This would make the assignment part of the algorithm O(n), which is much faster.

The limited search from -127 to 128 is a major defect. This arithmetic solver would say
that £ < —127 is unsatisfiable, but it obviously is satisfiable with x = —128.

Peer Review ID: 68522846 — enter this when you fill out your peer evaluation via gradescope



5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68522846 — enter this when you fill out your peer evaluation via gradescope

Page 11



