13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68540934 — enter this when you fill out your peer evaluation via gradescope

Page 3

regular expressions:

e = 7"x" singleton — matches the character x
| empty skip — matches the empty string
| e e concatenation — matches e; followed by e
| e1]es or — matches e; or ey
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

| [“x” — “y”] matches any character between X and y inclusive
| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The last four
cases can be defined in terms of the first five. We also give an abstract grammar for strings
(modeled as lists of characters):

s = nil empty string

| 7x” s string with first character X and other characters s

We write "bye” as shorthand for "b” :: 7y” :: 7e” :: nil. This exercise requires you to give
large-step operational semantics rules of inference related to regular expressions matching
strings. We introduce a judgment:

I e matches s leaving s’

The interpretation of the judgment is that the regular expression e matches some prefix of
the string s, leaving the suffix s’ unmatched. If s’ = nil then r» matched s exactly. Examples:

- ”h"("e”+) matches "hello” leaving "110”

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

= ("h” | 7e”)* matches "hello” leaving “ello”
= ("h” | 7e”)* matches "hello” leaving “hello”
= ("h” | 7e”)* matches "hello” leaving 71l0”

Here are two rules of inference:

g="%" 1 &

F ”x” matches s leaving s’ F empty matches s leaving s

Give large-step operational semantics rules of inference for the other three primal regular
expressions.

2

Peer Review ID: 68540934 — enter this when you fill out your peer evaluation via gradescope

I e; matches s leaving s” F e; matches s” leaving s
F e, eo matches s leaving s

F e; matches s leaving s’ e, matches s leaving s’
Fe1 | e; matches s leaving s’ Fe1 | ea matches s leaving s

F e matches s leaving s” F e* matches s” leaving s
F e* matches s leaving s F e* matches s leaving s’

Exercise 3F-3. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F”x” matches s leaving {s' | s ="x" 1 &'} empty matches s leaving {s}

I e; matches s leaving S+ e; matches s leaving S’
Fe1 | e; matches s leaving SU S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and eje,. You may not place
a derivation inside a set constructor, as in: {x | Jy. F e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

3

Peer Review ID: 68540934 — enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68540934 — enter this when you fill out your peer evaluation via gradescope

Page 6

The hypotheses of each rule of inference need to be fixed and finite.

It is impossible to write a rule for e;ey that captures multiple suffices. Let’s consider
the attempt below:

F e; matches s leaving S+ e; matches sy leaving S; ... F ey matches s; leaving S;

- e1 es matches s leaving (J S;
S; €S

For different s, #elements in set S is different. We need to match e, with all s; € S,
which means the number of our hypotheses depends on conditions.

For the rule of e*, my first attempt meets the problem of expressing both the base
case and the induction step in one rule. My second attempt meets the same problem
as previous, and what’s more, this time we know neither the number of elements in
each S or S; ; nor the total number of S; ; we have. Therefore, it is also impossible to
write a rule capturing multiple suffices for e*.

F e matches s leaving S | e* matches s; leaving ?
F e* matches s leaving 7

e matches s leaving S ... | e matches s; ; leaving S;; F e matches s, leaving {s; } }

- e* matches s leaving 7

Exercise 3F-4. Equivalence [7 points|. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ ¢ iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ey iff Vs € S. - e; matches s leaving S; A F ey matches s leaving S5 —>
S1 = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ es is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

4

Peer Review ID: 68540934 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68540934 — enter this when you fill out your peer evaluation via gradescope

Page 8

e; ~ ey is decideable, though I cannot explain the decision process within three sen-
tences. The idea is to convert e; and e, into finite state machines and return the
equivalence of the two finite state machines.

First let me introduce two kind of finite state machines that we can create from a
regular expression: NFA (nondeterministic finite automata) and DFA (deterministic
finite automata). NFA can be constructed based on Thompson’s Construction:

NFA for a NFA for ab

NFA for a"
NFAfora|b

(This figure above is from EECS 483 lecture 3 slide.)

We can observe that the four patterns are actually related to four of our primary forms
(excluding the empty form). Larger NFAs can be constructed by connecting the basic
NFAs in Thompson’s Construction according to the regular expression we want to
study.

A DFA is constructed from NFA that allows one transition per input per state and
no empty (in the figure, €) moves. If two regular expressions have the same DFA,
it means given an arbitrary input string s, the machine will execute through in the
same states. That is, S; = S, for Vs € S where F e; matches s leaving S; and
es matches s leaving Ss. Therefore , the equivalence of DFA implies e; ~ es.

Finally, DFA equivalence problem is decidable, because it is a subset of graph isomor-
phism problem, which is decidable. Therefore, e; ~ e5 is decidable.

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given DPLL-style
CNF SAT solver with the given theory of bounded arithmetic. In particular, you must
update only the Main.solve function. Your updated solver must be correct. This notably
implies that it must correctly handle all of the included test cases — we use diff for some
testing, but if you change only the listed method you should end up with the same answers
as the reference.

In addition, create an example “tricky” input that can be parsed by our test harness.

Submit your .ml and .input files.

5

Peer Review ID: 68540934 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68540934 — enter this when you fill out your peer evaluation via gradescope

Page 10

Exercise 3F-5. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

Last two tests: The last two tests contain more inequality relationship between
variables than other tests and have no unit clause or even pure literal. Thus when
running these two tests, DPLL(T) can do no trick in the SetTrue step. All it can do
is to wait for the result of the arithmetic solver. The defect (explained later) in our
arithmetic solver makes the running time even longer.

Egregious defect: In arith.ml line 68 when finding proper assignments of variables,
the algorithm starts from a fixed lower_bound (-127) and ends at either a feasible
assignment or the fixed upper_bound (128). This is inefficient, because there is no
need to check the assignments outside the given constraints. If an assignment doesn’t
exist, the current program needs to try 156 numbers before returning "None”. To
reduce meaningless trials, we can let the program find an interception of [lower_bound,
upper_bound] and all the input constraints, and try numbers within this interception.

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

6

Peer Review ID: 68540934 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68540934 — enter this when you fill out your peer evaluation via gradescope

Page 12

