13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68408531 — enter this when you fill out your peer evaluation via gradescope

Page 3

EECS 590 HW 3 Due on March 6th

3F-2. We introduce the following large-step operational semantics rules of inference for the other
three primal regular expressions:

- e; matches s leaving s; - ep matches s; leaving s

- ejex matches s leaving s’

I e; matches s leaving s’

Fe1 | e2 matches s leaving '

F e; matches s leaving s’

Fe1 | e2 matches s leaving '

F e * matches s leaving s

F e matches s leaving s; | e* matches sy leaving s

e * matches s leaving s’

3F-3. Within the given framework, it is likely impossible to provide such inference rules. Intuitively,
describing the possible suffixes left by the regular expression ejes requires looking at all suf-
fixes left by ej, then considering all possible suffixes ey leaves when matching any of these,
so some judgment including es is necessary in the final set constructor . A similar argument
applies to ex looking at e and ex recursively.

Consider, for example, the candidate rule

- e; matches s leaving S; | ez matches s leaving S

F e1es matches s leaving S1 M .S

for ejes. This is unsound with respect to the intuitive notion of regular expression matching.
Specifically, - "aa” matches ”a” leaving {””} is intuitively false, yet it is derivable since
F 7a” matches ”a” leaving {"”} is derivable and {"”} N {"”} = {””}, so we have the
derivation

F”a” matches "a” leaving {"”} F ”a” matches "a” leaving {"”}

F ”aa” matches ”a” leaving {"”}

Likewise, consider the candidate rule

- ee x matches s leaving S

F e* matches s leaving {s} U S

for ex. This is incomplete with respect to the intuitive notion of regular expression matching.
Specifically, - empty * matches s leaving {s} is true yet not derivable: whatever rule we
have for concatenation would necessarily involve a judgement of empty* matched against the
suffixes left by empty, but this is exactly the initial judgement, reaching an infinite recursion
and implying no finite derivation tree is possible. O

Peer Review ID: 68408531 — enter this when you fill out your peer evaluation via gradescope

2

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68408531 — enter this when you fill out your peer evaluation via gradescope

Page 5

EECS 590 HW 3 Due on March 6th

3F-2. We introduce the following large-step operational semantics rules of inference for the other
three primal regular expressions:

- e; matches s leaving s; - ep matches s; leaving s

- ejex matches s leaving s’

I e; matches s leaving s’

Fe1 | e2 matches s leaving '

F e; matches s leaving s’

Fe1 | e2 matches s leaving '

F e * matches s leaving s

F e matches s leaving s; | e* matches sy leaving s

e * matches s leaving s’

3F-3. Within the given framework, it is likely impossible to provide such inference rules. Intuitively,
describing the possible suffixes left by the regular expression ejes requires looking at all suf-
fixes left by ej, then considering all possible suffixes ey leaves when matching any of these,
so some judgment including es is necessary in the final set constructor . A similar argument
applies to ex looking at e and ex recursively.

Consider, for example, the candidate rule

- e; matches s leaving S; | ez matches s leaving S

F e1es matches s leaving S1 M .S

for ejes. This is unsound with respect to the intuitive notion of regular expression matching.
Specifically, - "aa” matches ”a” leaving {””} is intuitively false, yet it is derivable since
F 7a” matches ”a” leaving {"”} is derivable and {"”} N {"”} = {””}, so we have the
derivation

F”a” matches "a” leaving {"”} F ”a” matches "a” leaving {"”}

F ”aa” matches ”a” leaving {"”}

Likewise, consider the candidate rule

- ee x matches s leaving S

F e* matches s leaving {s} U S

for ex. This is incomplete with respect to the intuitive notion of regular expression matching.
Specifically, - empty * matches s leaving {s} is true yet not derivable: whatever rule we
have for concatenation would necessarily involve a judgement of empty* matched against the
suffixes left by empty, but this is exactly the initial judgement, reaching an infinite recursion
and implying no finite derivation tree is possible. O

Peer Review ID: 68408531 — enter this when you fill out your peer evaluation via gradescope

2

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68408531 — enter this when you fill out your peer evaluation via gradescope

Page 7

EECS 590 HW 3 Due on March 6th

3F-4. Equivalence of regular expressions is decidable. Given regular expressions 71, r9, it suffices to
determine whether they describe the same language. Since any regular language is matched
by a unique DFA with a minimal number of states (up to isomorphism), we can simply
compute these minimal DFAs then check that they are isomorphic by looking at all pos-
sible relabellings. Concretely, this could be done applying Thompon’s construction to get
NFAs, applying the Rabin-Scott powerset construction to produce equivalent DFAs, then
using Hopcraft’s algorithm to minimizes these DFAs. O

3F-5. Considering the last two test cases, they take comparatively longer to run due to the large
number of arithmetic variables causing a time-consuming brute force search in the integer
arithmetic solver. More concretely, consider the input

(x> y) && (y > 2) && (2 = 10) && (z < 12)
for test-35. This input is expanded to be solely in terms of <, >, and =, resulting in
(x>y) && (z=y) && (y > 2) && (y = 2) && (2 = 10) && (x < 12) && I(z = 12).

Each clause involving arithmetic is then assigned a boolean variable, producing the CNF
formula

To && Ty && T && T3 && Ty && Ts && Tk.

The DPLL algorithm is run on this formula to find a boolean assignment. Since each variable
occurs in a unit clause, each is immediately assigned to the make said unit clause true, and
the obvious satisfying assignment is quickly produced.

After this, the assignment to the theory variables is passed to the theory solver i,e, the solver
in arith.ml. Since the solver simply brute force considers all assignments to x,y, z within the
range [—127, 128], a total of 22* possibilities are searched before unsatisfiability is determined.
Every other test case contains at most two arithmetic variables, hence the comparative run-
time difference.

Since no solution is found by the theory, the negation of all the current assignments of the
theory variable is added to the formula, resulting in the new formula

(T || Ty || '] \Ts || Th || Ts || To) && To && \Th && T && 1Ty && Ty && T && T,

DPLL is run agan, and the unit clauses immediately determine assignments once more. For
each unit clause, after assignment the literal is removed from any other clause containing it,
eventually leaving this first clause empty and causing DPLL to report unsatisfiability overall.

In this run, as well as for test-36, all aspects solely involving DPLL are quick due to the
unit clauses, so the only reasonable way to improve the performance here would be to rewrite
arith.ml. In these particular cases, all arithmetic terms are linear, so delegating to a solver for
linear bounded arithmetic would be beneficial. More specifically, this could be accomplished
by first collecting all linear arithmetic clauses, passing these to a solver which uses, say, the
Simplex method, then only brute forcing the non-linear clauses after a solution to the linear
clauses is found.

Peer Review ID: 68408531 — enter this when you fill out your peer evaluation via gradescope

3

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68408531 — enter this when you fill out your peer evaluation via gradescope

Page 9

EECS 590 HW 3 Due on March 6th

3F-4. Equivalence of regular expressions is decidable. Given regular expressions 71, r9, it suffices to
determine whether they describe the same language. Since any regular language is matched
by a unique DFA with a minimal number of states (up to isomorphism), we can simply
compute these minimal DFAs then check that they are isomorphic by looking at all pos-
sible relabellings. Concretely, this could be done applying Thompon’s construction to get
NFAs, applying the Rabin-Scott powerset construction to produce equivalent DFAs, then
using Hopcraft’s algorithm to minimizes these DFAs. O

3F-5. Considering the last two test cases, they take comparatively longer to run due to the large
number of arithmetic variables causing a time-consuming brute force search in the integer
arithmetic solver. More concretely, consider the input

(x> y) && (y > 2) && (2 = 10) && (z < 12)
for test-35. This input is expanded to be solely in terms of <, >, and =, resulting in
(x>y) && (z=y) && (y > 2) && (y = 2) && (2 = 10) && (x < 12) && I(z = 12).

Each clause involving arithmetic is then assigned a boolean variable, producing the CNF
formula

To && Ty && T && T3 && Ty && Ts && Tk.

The DPLL algorithm is run on this formula to find a boolean assignment. Since each variable
occurs in a unit clause, each is immediately assigned to the make said unit clause true, and
the obvious satisfying assignment is quickly produced.

After this, the assignment to the theory variables is passed to the theory solver i,e, the solver
in arith.ml. Since the solver simply brute force considers all assignments to x,y, z within the
range [—127, 128], a total of 22* possibilities are searched before unsatisfiability is determined.
Every other test case contains at most two arithmetic variables, hence the comparative run-
time difference.

Since no solution is found by the theory, the negation of all the current assignments of the
theory variable is added to the formula, resulting in the new formula

(T || Ty || '] \Ts || Th || Ts || To) && To && \Th && T && 1Ty && Ty && T && T,

DPLL is run agan, and the unit clauses immediately determine assignments once more. For
each unit clause, after assignment the literal is removed from any other clause containing it,
eventually leaving this first clause empty and causing DPLL to report unsatisfiability overall.

In this run, as well as for test-36, all aspects solely involving DPLL are quick due to the
unit clauses, so the only reasonable way to improve the performance here would be to rewrite
arith.ml. In these particular cases, all arithmetic terms are linear, so delegating to a solver for
linear bounded arithmetic would be beneficial. More specifically, this could be accomplished
by first collecting all linear arithmetic clauses, passing these to a solver which uses, say, the
Simplex method, then only brute forcing the non-linear clauses after a solution to the linear
clauses is found.

Peer Review ID: 68408531 — enter this when you fill out your peer evaluation via gradescope

3

EECS 590 HW 3 Due on March 6th

As for outright defects in the code, the most egregious is the inclusion of pure variable
elimination in dpll.ml. In DPLL(T), since theory variables may be logically dependent, it’s
not valid to assume any pure variable can be set to true. Consider, for example, the formula

(>10]|z<3)&& (x> 10|z <9) && (x < 7).

The term (xz > 10) is pure, but setting it to true would result in the formula being incorrectly
reported as unsatisfiable, since (z > 10) would contradict (x < 7). While the implementation
in this homework may still produce the correct answer, as any inconsistencies in the theory
result in a total restart, the use is still unsound in general, and in any case, it would lead to
a greater number of inconsistent assignments.

Peer Review ID: 68408531 — enter this when you fill out your peer evaluation via gradescope

4

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68408531 — enter this when you fill out your peer evaluation via gradescope

Page 12

