Question assigned to the following page: 2

Peer Review ID: 310972887 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-1. Regular Expression, Large-Step [10 points]. Regular Expressions
are commonly used as abstractions for string matching. Here is an abstract grammar for
regular expressions:

e = "% singleton — matches the character x
| empty skip — matches the empty string
| e e concatenation — matches e; followed by e
| e e or — matches e; or ey
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

| [’x” —”y”] matches any character between X and y inclusive
| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The last four cases
can be defined in terms of the first five. We also give an abstract grammar for strings (modeled
as lists of characters):

s == nil empty string

|))]

x”7 1 s string with first character X and other characters s

We write "bye” as shorthand for ”b” :: 7y” :: ”e” :: nil. This exercise requires you to give
large-step operational semantics rules of inference related to regular expressions matching
strings. We introduce a judgment:

F e matches s leaving s

The interpretation of the judgment is that the regular expression e matches some prefix of
the string s, leaving the suffix s/ unmatched. If s’ = nil then r matched s exactly. Examples:

F ”h”(”e”+) matches "hello” leaving "110”

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

F ("n” | ”7€”)* matches "hello” leaving ”ello”
F ("h” | ”7€”)* matches "hello” leaving “hello”
F ("h” | 7e”)* matches "hello” leaving 7110”

Here are two rules of inference:
s = ”X” - s/
F 7x” matches s leaving s’ F empty matches s leaving s

Give large-step operational semantics rules of inference for the other three primal regular
expressions.

Page 2

Peer Review ID: 310972887 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 2

Peer Review ID: 310972887 — enter this when you fill out your peer evaluation via gradescope

Solution:

1. e ey
F el matches s leaving sg F €2 matches sq leaving s’

F el e2 matches s leaving s’

2. €1 ‘ €2
There are 2 cases, either el matches s or e2 matches s:

F el matches s leaving ' e2 matches s leaving s’

F el|e2 matches s leaving s’ F el|e2 matches s leaving s/

3. ex
The first rule covers the base case where e* matches 0 occurrences of s. The second
rule covers the case where e matches part of s.

F e matches s leaving s, e x matches s, leaving s’
F e x matches s leaving s F e * matches s leaving s’

Page 3

Peer Review ID: 310972887 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 310972887 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from the
single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F ”x” matches s leaving {s' | s ="%x" :: &'} F empty matches s leaving {s}

F e; matches s leaving S+ e, matches s leaving S’
F e | ea matches s leaving S U S’

You must do one of the following;:

e cither give operational semantics rules of inference for ex and ejes. You may not place
a derivation inside a set constructor, as in: {x | Jy. + e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given framework.
Back up your argument by presenting two attempted but “wrong” rules of inference and
show that each one is either unsound or incomplete with respect to our intuitive notion
of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

Solution:
It cannot be done correctly, because it is impossible to create sound and complete rules
without placing a derivation inside a set.

Attempted rule for el e2:

F el matches s leaving S1 I €2 matches s leaving S2
F el e2 matches s leaving S1U 52

This rule is unsound because S2 is not a valid result of matching, since e2 has to match
S1, but it is impossible to show that without using a derivation in a set.

Attempted rule for ex:
- e matches s leaving S

e * matches s leaving {s} U S

This rule is incomplete because it only covers the cases where e matches 0 or 1 times, but
not multiple. Without derivations inside set constructors, it is impossible to capture all
possible suffixes.

Page 4

Peer Review ID: 310972887 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 310972887 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-3. Equivalence [7 points]. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ c iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ es iff Vs € S. F e; matches s leaving S; A I es matches s leaving S —>
S1 = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ ey is undecidable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader is
familiar with the relevant literature.

Solution: el ~ e2 is undecidable.

Let el be a regex that matches any string. Let e2 be a regex that matches a string that
represents a non-halting program. If the program halts, then el is not equivalent to e2
because el will match strings representing halting programs. If the program doesn’t halt,
then el and e2 are equivalent because they match infinitely looping strings. Thus, if
el ~ e2 is decidable, then you could solve the halting problem. Thus, el ~ e2 is not
decidable.

Page 5

Peer Review ID: 310972887 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 310972887 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

Solution: The CNFs of the last two test cases do not have unit clauses that can be
assigned right away, so they need to use the bounded exhaustive search. I would rewrite
the Arith module first to improve performance, which currently seems to use a brute
force/bounded exhaustive search approach of trying to assign all possible integer values
to each variable. It could be rewritten to use the Simplex algorithm which uses heuristics
to minimize enumerating all possible values.

Page 6

Peer Review ID: 310972887 — enter this when you fill out your peer evaluation via gradescope

