13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68551038 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 3F-2. Regular Expression, Large-Step [10 points]

Concatenation

F e; matches s leaving s; F eo matches s; leaving s

F e; eo matches s leaving s,

F e; matches s leaving s;

F e1]eo matches s leaving s;

F es matches s leaving s

F e1]e2 matches s leaving s,

Kleene star
F e; matches s leaving s; F e; ¥ matches s; leaving s,

F e; * matches s leaving s,

I e; * matches s leaving s

Exercise 3F-3. Regular Expression and Sets [5 points]

I claim that it is impossible to write operational semantics rules of inference given the restrictions
that we have. This is because for the commands that are dependent on executing something first
(concatenation and kleene star), the first command can return a set of size more than one, and
the second command has no way to specify that we want to operate on every element within the
initially returned set given the constraints.

Consider the following attempt to write a rule for Kleene star:

F e; * matches s leaving {s}

F e; matches s leaving S) = {s1]|s = e 1 51} F e, * matches s; leaving S

F e; * matches s leaving S; U S,

This doesn’t work as S can have potentially more than one element depending on what the expres-
sion is. In order to return the correct output, we would have to run our recursive match command

Peer Review ID: 68551038 — enter this when you fill out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68551038 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 3F-2. Regular Expression, Large-Step [10 points]

Concatenation

F e; matches s leaving s; F eo matches s; leaving s

F e; eo matches s leaving s,

F e; matches s leaving s;

F e1]eo matches s leaving s;

F es matches s leaving s

F e1]e2 matches s leaving s,

Kleene star
F e; matches s leaving s; F e; ¥ matches s; leaving s,

F e; * matches s leaving s,

I e; * matches s leaving s

Exercise 3F-3. Regular Expression and Sets [5 points]

I claim that it is impossible to write operational semantics rules of inference given the restrictions
that we have. This is because for the commands that are dependent on executing something first
(concatenation and kleene star), the first command can return a set of size more than one, and
the second command has no way to specify that we want to operate on every element within the
initially returned set given the constraints.

Consider the following attempt to write a rule for Kleene star:

F e; * matches s leaving {s}

F e; matches s leaving S) = {s1]|s = e 1 51} F e, * matches s; leaving S

F e; * matches s leaving S; U S,

This doesn’t work as S can have potentially more than one element depending on what the expres-
sion is. In order to return the correct output, we would have to run our recursive match command

Peer Review ID: 68551038 — enter this when you fill out your peer evaluation via gradescope

onall the elements that get returned. However, we can not specify that we want to do that without
using a derivation inside a set constructor. Looking at the command provided, we can see that we
are indeed only matching one of the potential elements in S.

Consider the following attmept to write a rule for concatenation:

F e; matches s leaving {s;|s; = e; = s} F e; matches s; leaving S

F e; eo matches s leaving S

The same issue occurs. The second judgement has no way to specify all the elements of the first
set given that we must used a finite and fixed amount of hypotheses and are disallowed judgements
in the set construction. Consequently, if the expression generates a set of size more than one, our
second judgement on the top has no way to handle it.

Exercise 3F-4. Equivalence [7 points]

I claim that e; ~ ey is decidable.

It is possible to decide an equivalent DFA for a regex expression, where the strings that the DFA ac-
cepts will be the exact ones that are in the set the regex leaves in the statement e matches s leaving S.
It is possible to decide equivalences of DFAs by reducing each DFA to its minimal counterpart and
then comparing them. Consequently, we can check the equivalence of two regex statements by
checking the equivalence of the minimal DFAs corresponding to each regex statement.

Exercise 3C. SAT Solving

Submitted

Exercise 3F-5. SAT Solving [6 points]

When we’re working pure propositional logic, all variables are independent, which makes analysis
easier. On the other hand allowing theories introduces the possibility of having dependent variables.
If we comb through the test cases, we can see that despite some of the other test cases using more
than just boolean logic, only the last two test cases actually have dependent variables, which is
what leads to the slowdown in runtime.

If we take a look at the arithmetic module provided to us, one of the first comments present
is that it is "a very simple, but very inefficient, integer arithmetic constraint solver.” Since this
module is really what handles the introduction of theories, it makes sense that this module is
what’s causing the slowdown and is the most inefficient. Scanning through the module, we notice

Peer Review ID: 68551038 — enter this when you fill out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68551038 — enter this when you fill out your peer evaluation via gradescope

Page 8

onall the elements that get returned. However, we can not specify that we want to do that without
using a derivation inside a set constructor. Looking at the command provided, we can see that we
are indeed only matching one of the potential elements in S.

Consider the following attmept to write a rule for concatenation:

F e; matches s leaving {s;|s; = e; = s} F e; matches s; leaving S

F e; eo matches s leaving S

The same issue occurs. The second judgement has no way to specify all the elements of the first
set given that we must used a finite and fixed amount of hypotheses and are disallowed judgements
in the set construction. Consequently, if the expression generates a set of size more than one, our
second judgement on the top has no way to handle it.

Exercise 3F-4. Equivalence [7 points]

I claim that e; ~ ey is decidable.

It is possible to decide an equivalent DFA for a regex expression, where the strings that the DFA ac-
cepts will be the exact ones that are in the set the regex leaves in the statement e matches s leaving S.
It is possible to decide equivalences of DFAs by reducing each DFA to its minimal counterpart and
then comparing them. Consequently, we can check the equivalence of two regex statements by
checking the equivalence of the minimal DFAs corresponding to each regex statement.

Exercise 3C. SAT Solving

Submitted

Exercise 3F-5. SAT Solving [6 points]

When we’re working pure propositional logic, all variables are independent, which makes analysis
easier. On the other hand allowing theories introduces the possibility of having dependent variables.
If we comb through the test cases, we can see that despite some of the other test cases using more
than just boolean logic, only the last two test cases actually have dependent variables, which is
what leads to the slowdown in runtime.

If we take a look at the arithmetic module provided to us, one of the first comments present
is that it is "a very simple, but very inefficient, integer arithmetic constraint solver.” Since this
module is really what handles the introduction of theories, it makes sense that this module is
what’s causing the slowdown and is the most inefficient. Scanning through the module, we notice

Peer Review ID: 68551038 — enter this when you fill out your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68551038 — enter this when you fill out your peer evaluation via gradescope

Page 10

onall the elements that get returned. However, we can not specify that we want to do that without
using a derivation inside a set constructor. Looking at the command provided, we can see that we
are indeed only matching one of the potential elements in S.

Consider the following attmept to write a rule for concatenation:

F e; matches s leaving {s;|s; = e; = s} F e; matches s; leaving S

F e; eo matches s leaving S

The same issue occurs. The second judgement has no way to specify all the elements of the first
set given that we must used a finite and fixed amount of hypotheses and are disallowed judgements
in the set construction. Consequently, if the expression generates a set of size more than one, our
second judgement on the top has no way to handle it.

Exercise 3F-4. Equivalence [7 points]

I claim that e; ~ ey is decidable.

It is possible to decide an equivalent DFA for a regex expression, where the strings that the DFA ac-
cepts will be the exact ones that are in the set the regex leaves in the statement e matches s leaving S.
It is possible to decide equivalences of DFAs by reducing each DFA to its minimal counterpart and
then comparing them. Consequently, we can check the equivalence of two regex statements by
checking the equivalence of the minimal DFAs corresponding to each regex statement.

Exercise 3C. SAT Solving

Submitted

Exercise 3F-5. SAT Solving [6 points]

When we’re working pure propositional logic, all variables are independent, which makes analysis
easier. On the other hand allowing theories introduces the possibility of having dependent variables.
If we comb through the test cases, we can see that despite some of the other test cases using more
than just boolean logic, only the last two test cases actually have dependent variables, which is
what leads to the slowdown in runtime.

If we take a look at the arithmetic module provided to us, one of the first comments present
is that it is "a very simple, but very inefficient, integer arithmetic constraint solver.” Since this
module is really what handles the introduction of theories, it makes sense that this module is
what’s causing the slowdown and is the most inefficient. Scanning through the module, we notice

Peer Review ID: 68551038 — enter this when you fill out your peer evaluation via gradescope

that we effectively consider all possible values (in a given range) for all possible variables. However,
this means that we’re also considering values that we can guarantee aren’t possible. For example,
if we were given x > y, this module would still check x = 10,y = 100. The first fix I would make
is to add some logic constraining the search range of dependent variables in the cases that the
dependency must be true. If, for example a statement looked like = > y||y >= z, then there is not
much reason to constrain the search range for our variables. Furthermore, we could additionally
introduce some sort of backtracking algorithm to more intelligently attempt values that fit these
dependency constraints.

Peer Review ID: 68551038 — enter this when you fill out your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68551038 — enter this when you fill out your peer evaluation via gradescope

Page 13

