Question assigned to the following page: 2

Peer Review ID: 311030409 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-1: Large-Step Operational Semantics
for Regular Expressions

We define the judgment:
I e matches s leaving s’

meaning that the regular expression e matches some prefix of the string s,
leaving the suffix s’.

1. Singleton (Given)

§="g" 5

= 72” matches s leaving s’

2. Empty (Given)

F empty matches s leaving s

3. Concatenation (ejes)

The concatenation e; es matches a string s if e; matches a prefix of s, leaving a
suffix s, and then e; matches a prefix of ', leaving a suffix s”

€1 matches s leaving s’ F e matches s’ leaving s”

F (e1e2) matches s leaving s”

4. Or (61 ‘ 62)

The or expression e; | e2 matches a string s if either e; matches s leaving s’ or
e2 matches s leaving s'.

F e; matches s leaving s’ - €2 matches s leaving s’

F (e1 | e2) matches s leaving s’ F (e1 | e2) matches s leaving s’

5. Kleene Star (e*)

The Kleene star e* matches a string s if either:

Zero occurrences:

F e* matches s leaving s

One or more occurrences:

e matches s leaving s’ F e* matches s’ leaving s”

F e* matches s leaving s”

Peer Review ID: 311030409 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 311030409 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-2: Regular Expression and Sets

Problem: We need to provide deterministic operational semantics rules for the
Kleene star (e*) and concatenation (ejez) that return the set of all possible
suffixes S for the judgment:

e matches s leaving S

However, it is not possible to correctly define these rules in the given
framework without introducing non-finite or recursive structures.

Argument: It Cannot Be Done Correctly in the Given Framework

The challenge arises because the Kleene star (e*) and concatenation (ejez)
inherently involve non-determinism and recursion. Capturing all possible suf-
fixes S requires considering an unbounded number of possibilities, which cannot
be expressed with a finite and fixed set of hypotheses in the given framework.

Why It Fails

1. Kleene Star (e*): The Kleene star matches zero or more occurrences
of e. Each occurrence of e can split the string s into different prefixes
and suffixes, resulting in an exponential number of possible suffix sets. To
capture all possible suffixes, we would need to recursively apply the Kleene
star rule, which cannot be expressed with a finite set of hypotheses.

2. Concatenation (ejey): Concatenation requires matching e; against all
possible prefixes of s. For each such match, ez must match the remaining
suffix, leading to a combinatorial explosion of possible suffix sets. This
complexity cannot be captured with a finite and fixed set of hypotheses.

Two “Wrong” Attempts

Attempt 1: Kleene Star (e*)
Incorrect Rule:

e matches s leaving S Vs’ € S, F e* matches s’ leaving S’

F e* matches s leaving SUJ,cg S

*Why It Fails:

e This rule attempts to recursively apply the Kleene star to all suffixes
ses.

e It is unsound because it assumes the set S’ can be computed for each s’
in a finite way, which is impossible without unbounded recursion.

e It violates the requirement that each inference rule must have a finite and
fixed set of hypotheses.

Peer Review ID: 311030409 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 311030409 — enter this when you fill out your peer evaluation via gradescope

Attempt 2: Concatenation (ejez)
Incorrect Rule:

F e1 matches s leaving S Vs’ € S, F ez matches s’ leaving S’

F (e1e2) matches s leaving (J /g S’
Why It Fails:

e This rule attempts to compute the set of all possible suffixes by iterating
over s € S and applying es to each s'.

e It is incomplete because it does not account for the fact that e; and es
can match in multiple overlapping ways.

e Like the Kleene star attempt, it violates the finite and fixed hypotheses
requirement.

Peer Review ID: 311030409 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 311030409 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-3: Equivalence of Regular Expres-
sions

The equivalence relation e; ~ ey for regular expressions is defined as:
e ~ ey < Vs € S. ey matches s leaving S1A F ey matches s leaving Sy = 51 = Sy

This means that two regular expressions e; and ey are equivalent if, for every
string s, the sets of possible suffixes S; and Sy produced by matching e; and es
against s are identical.

Claim: e; ~ e is Decidable

Unlike the equivalence of IMP commands, which is undecidable due to its con-
nection to the halting problem, the equivalence of regular expressions is decid-
able. This is because regular expressions can be converted into finite automata
(NFAs or DFAs), and the equivalence of finite automata is decidable.

How to Compute e; ~ e

1. Convert e¢; and e>; to NFAs:

e Use the standard construction (e.g., Thompson’s algorithm) to con-
vert e; and ey into NFAs Ny and N,.

2. Convert NFAs to DFAs:

e Use the subset construction to convert N; and Ny into DFAs D; and
Ds.

3. Minimize the DFAs:

e Use the Hopcroft minimization algorithm to minimize D; and D
into their canonical forms D} and Dj.

4. Check for Isomorphism:

e Compare the minimized DFAs D} and D). If they are isomorphic
(i.e., they have the same structure), then e; ~ es. Otherwise, they
are not equivalent.

Why This Works

I would say that, regular expressions, NFAs, and DFAs are all equivalent in
expressive power, and equivalence between them is well-defined. The process of
converting regular expressions to NFAs, NFAs to DFAs, and minimizing DFAs
is algorithmic and guaranteed to terminate, and the isomorphism check between
minimized DFAs is also algorithmic and efficient.

Peer Review ID: 311030409 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 311030409 — enter this when you fill out your peer evaluation via gradescope

Exercise 3F-4: SAT Solving with DPLL(T)

The last two included tests take significantly longer due to the increased com-
plexity of the constraints and the interactions between the Boolean and theory
solvers in the DPLL(T) framework. Several factors contribute to the extended
runtime:

1. Complex Arithmetic Constraints: Both tests involve chains of in-
equalities and equalities, requiring the arithmetic solver to reason about
variable bounds. In cases where variable bounds are tight and the solution
space is narrow, the solver may perform numerous failed attempts before
identifying conflicts or valid assignments.

2. Delayed Conflict Detection: In Test 35, the solver must deduce that
no assignment of z, y, z can simultaneously satisfy (z > y)A(y > 2)A(z =
10) A (z < 12). If the solver explores many partial assignments with-
out early detection of the arithmetic conflict, it wastes time on fruitless
branches.

3. Inefficient Theory Propagation: The interaction between the SAT
and arithmetic solvers may be inefficient. If the theory solver does not
promptly propagate inequalities (e.g., deducing that z > 11 from (z > y)A
(y > 10)), the SAT solver continues to explore inconsistent assignments.

4. Lack of Effective Conflict Clause Learning: Without robust conflict
clause learning, the solver repeatedly explores similar conflicts. Efficient
clause learning helps prune the search space, but if implemented poorly,
significant backtracking overhead occurs.

5. Suboptimal Variable Selection Heuristics: The solver may lack ad-
vanced heuristics like VSIDS (Variable State Independent Decaying Sum)
or phase saving, resulting in inefficient exploration of the search space.

Detailed Analysis of Tests 35 and 36

Test 35:
(z>y)AN(y>2)A(z=10) A (z < 12)

e From (z = 10), we get z = 10.
e From (y > z), it follows that y > 10 = y > 11.
e From (z > y), it follows that z > 11 = z > 12.

e The constraint (z < 12) conflicts with « > 12, making the formula unsat-
isfiable.

Peer Review ID: 311030409 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 311030409 — enter this when you fill out your peer evaluation via gradescope

Peer Review ID: 311030409

Why it is slow: The solver may explore assignments for x below 12 before
realizing no solution exists, especially if conflict detection is delayed.

Test 36:
(z>y)AN(y>2)A(z=10) A (z < 13)

e From (z = 10), we have z = 10.

e From (y > z), it follows that y > 10 = y = 11.

e From (z > y), it follows that z > 11 = z > 12.

o The constraint (z < 13) allows z = 12, satisfying all constraints.
Why it is slow despite being satisfiable:

e The solver still explores invalid assignments (e.g., z = 11) before finding
a valid one.

e Without strong propagation, the solver does not immediately deduce that
z must be at least 12.

e Backtracking occurs when earlier decisions on y or z fail, adding overhead.

Which Module to Rewrite for Performance Improvement

The most critical module to rewrite is the theory propagation and conflict de-
tection module. This is because, early detection of arithmetic conflicts would
prevent exploring invalid branches and improved theory propagation reduces
the number of SAT-level decisions and backtracks.

Improvements:

1. Stronger Bound Propagation: Implement an arithmetic constraint
solver that aggressively propagates variable bounds. For example, from
(y > 2) A (z = 10), immediately infer y > 10, which, combined with
(z > y), gives > 11. Detect the conflict with (z < 12) early.

2. Enhanced Conflict Clause Learning: Generate minimal conflict clauses
that directly block invalid assignments. This helps the solver avoid revis-
iting the same conflicts.

3. Variable Selection Heuristics: Use heuristics like VSIDS or phase sav-
ing to prioritize decisions on variables involved in arithmetic constraints.

Code Defect

A particularly egregious defect in the provided code is the failure to propagate
arithmetic-derived conflicts back to the SAT solver immediately. Therefore, we
must ensure that after every arithmetic assignment, the theory solver updates
all related variable bounds and reports conflicts instantly.

enter this when you fill out your peer evaluation via gradescope

