13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68121794 — enter this when you fill out your peer evaluation via gradescope

Page 3



Exercise 3F-1. Regular Expression, Large-Step [10 points]. Regular Expressions
are commonly used as abstractions for string matching. Here is an abstract grammar for
regular expressions:

e = "% singleton — matches the character X
| empty skip — matches the empty string
| e e concatenation — matches e; followed by e
| e ] e or — matches e; or e
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

| [’x” —”y”] matches any character between X and y inclusive
| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The last four
cases can be defined in terms of the first five. We also give an abstract grammar for strings
(modeled as lists of characters):

s u= nil empty string

’ 7 &7

x” 1 s string with first character X and other characters s

We write "bye” as shorthand for "b” :: ”y” :: 7e” :: nil. This exercise requires you to give
large-step operational semantics rules of inference related to regular expressions matching

strings. We introduce a judgment:
e matches s leaving s’

The interpretation of the judgment is that the regular expression e matches some prefix of
the string s, leaving the suffix s’ unmatched. If s’ = nil then » matched s exactly. Examples:

F7h”(”e”+) matches "hello” leaving "110”

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

F ("h” | 7e”)* matches "hello” leaving "ello”
F ("h” | ”e”)* matches "hello” leaving “hello”
F ("h” | 7e”)* matches "hello” leaving 7110”

Here are two rules of inference:

Wem®' on wl

§="%"ns
F 7x” matches s leaving s’ F empty matches s leaving s

Give large-step operational semantics rules of inference for the other three primal regular
expressions.

Peer Review ID: 68121794 — enter this when you fill out your peer evaluation via gradescope



Peer Review ID: 68121794

Answer:

F e; matches s leaving s F e; matches s’ leaving s”

F ei1es matches s leaving s”

F e; matches s leaving s

0o

F e1]e2 matches s leaving s’

F e, matches s leaving s

&0

F e1]e2 matches s leaving s’

F e x matches s leaving s

F e matches s leaving s’ F e x matches s’ leaving s”

F e * matches s leaving s”

enter this when you fill out your peer evaluation via gradescope



2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68121794 — enter this when you fill out your peer evaluation via gradescope

Page 6



Exercise 3F-2. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

- e matches s leaving S

And use rules of inference like the following:

F ”x” matches s leaving {s' | s ="x" :: §'} - empty matches s leaving {s}

F e; matches s leaving S F e; matches s leaving S’
F ey | ea matches s leaving SU S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and ejes. You may not place
a derivation inside a set constructor, as in: {x | Jy. F e matches x leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.
Answer:

We think it cannot be done correctly in the given frame-work. Both cannot be express by
finite and fixed set of hypothesis. We present following attempted:

1

F e % matches s leaving {s}

F e matches s leaving S’ Vs; € S', F ex matches s; leaving S;

e x matches s leaving {s} Ulzﬂ S

F e; matches s leaving S’ Vs; € S, F ey matches s; leaving S;
g

i i
F e1es matches s leaving U‘i:{ S;

Notice that S’ is not a hypothesis. S’ is a variable inside a hypothesis, which is not finite
and not fixed, which means we may have infinite and not fixed hypotheses in the “V”’ part.
We cannot write down an inference rule that has a countably or uncountably infinite number
of hypotheses. So it cannot be done correctly in the given frame-work.

Peer Review ID: 68121794 — enter this when you fill out your peer evaluation via gradescope



3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68121794 — enter this when you fill out your peer evaluation via gradescope

Page 8



Exercise 3F-3. Equivalence [7 points|. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ c iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ ep iff Vs € S. F e; matches s leaving S; A F ey matches s leaving S —>
S1 = S (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ e is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

Answer:
e1 ~ eg is decidable.

e1 ~ eq iff their expressions are equivalent. And we have decidable algorithm that can
compare whether two regular expressions are equivalent.
Algorithm:

Input: ey, e

1. Transform e; and ey to standard Regular expression r; and 79

2. Use Thompson’s construction algorithm to transform r; and 7, to Nondeterministic
finite automaton nfa; and nfas

3. Use subset construction algorithm to transform nfa; and nfas to Deterministic finite
automaton dfa; and dfas

4. Reduce dfa; and df ay to minimal DFA (canonical form) minDF Ay and minDF Ay

%

(a) If minDF Ay and minDF A, are equivlant, output e; ~ ey
(b) Else, output e; o ey

Decidable:

We can easily transform our version of regular expression to the standard expression with
O(n) times. It’s already proved in PL area that regular expression can be transformed to a
NFA, NFA can be transformed to DFA, and DFA can be transformed to minimal DFA with
decidable program. And there is efficient program that can compare minimum DFAs. So
the total program is decidable.

Correctness:
For an arbitry s = cjcy. .. ¢, of length n, where ¢; to ¢, are n chars, we define two sets
ST and S~:
+ _ .
ST ={nil,c1, 109, ,c1. .. Cpo1,01 ... Cn}
ST ={c1...ChyCa. .. CnyC3...Cpy- e, Cpynil}

Vi, we have St[i]S™[i] = s. We also define © as:
s 8 ={ss"=5,§€85,8CS5" €5}

>

Peer Review ID: 68121794 — enter this when you fill out your peer evaluation via gradescope



For a regular expression r, we call R as the set of language that r define. Assume e; and
es’s corresponding regular expression are mapped to set Ry and Ry. Thus, we can write the
following two expression:

S =56 (R NST
Sy =56 (RyN ST

Thus, we have
R1:R2<:>VS,31:SQ<:>61N62

Thus, to decide whether e; ~ ey, we only need to tell whether Ry = Rs, which is just what
our algorithm do. Hence, it is correct.

Peer Review ID: 68121794 — enter this when you fill out your peer evaluation via gradescope



4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68121794 — enter this when you fill out your peer evaluation via gradescope

Page 11



Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.
Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.
Answer:
I think one bottleneck of the last two included tests is in arith.ml, line 68-71. The given
program uses a brute-force algorithm to test every point in the whole variable space, which
will have O(256") time complexity if the number of variables is n. In test-35 and test-36,
the function consider will be called about 23! ~ 232 times. In some more efficient DPLL(X)
engines, we usually use a simple, minimal interface to solve for arithmetic constraint solver.
For example, we can treat it as a linear programming problem given a virtual task of max-
imizing the sum of all variables. Then we can apply a simplex algorithm that can greatly
reduce average running time.

Another defect I found is the dpll.ml. In line 138-149, we notice that the given version of
dpll will do a recursive unit propagation once and do a recursive pure variable elimination.
And then it will try to guess one symbol, like:

dpll_sat clauses model:
1. clauses’ model’ = unit_propagation clauses model
2. clauses” model” = pure_variable_elimination clauses’ model’
3. return dpll_sat clause”[cO=true] model” or dpll_sat clause”[cO=false] model”

But we could do the first two step as a loop, like:

dpll_sat clauses model:
1. while true

(a) clauses” model’ = unit _propagation clauses model
(b) clauses” model” = pure_variable_elimination clauses’ model’

(c) if clauses == clauses” break else clauses = clauses”, model = model”

2. return dpll_sat clause”[cO=true] model” or dpll_sat clause”[cO=false] model”

Peer Review ID: 68121794 — enter this when you fill out your peer evaluation via gradescope



5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68121794 — enter this when you fill out your peer evaluation via gradescope

Page 13



