Question assigned to the following page: 2

Peer Review ID: 311042600 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-1

F e, matches s; leaving s F e, matches s, leaving s3
- concat
F ejes matches s; leaving s3
e; matches s leaving s’ i
or
e | e, matches s leaving s’
e matches s leaving s’ 5
or
Fep | ez matches s leaving s
- Kleenel
Fex* matches s leaving s
F e matches s; leaving so Fex matches sy leaving s3
Kleene2

Fe* matches s; leaving s3

Peer Review ID: 311042600 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 3

Peer Review ID: 311042600 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-2

One observation is that for the judgment F e matches s leaving S, for some e and s, as
s is always a finite string by construction, any element s’ € S must be a substring of s, and

they share the same suffix up to a certain point, i.e., s = "21” :: 725" :: - -+ :: . Therefore,
S must be a finite set of strings with size at most length(s) + 1.
Tentative rules for concatenation:
F e; matches s; leaving Ss Vs € Sy. F e; matches s leaving S3(s)
concatS

F ejeo matches s; leaving U Ss(s)
SESy

The second hypothesis is essentially defining one hypothesis for each s € Sy, which seems to
violate the requirement that there must be a finite and fixed set of hypotheses. In particular,
since Sy is always a finite sets, there are indeed only finitely many hypotheses in the above
rule; while it’s ambiguous to say whether this is a “fixed” set of hypotheses, depending on
the exact definition of “fixed”.

KleeneS1

F e matches s leaving {s}

F e matches s; leaving S Vs € Sy. F ex matches s leaving Ss(s)
KleeneS2

F ex matches s; leaving U S3(s)
SE€S2

Similarly, if we accept the above uses of set of hypotheses, then the rules for Kleene stars
can also be defined as above.

Peer Review ID: 311042600 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 4

Peer Review ID: 311042600 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-3

The equivalence is defined as follow in the problem statement. Let e;,e; be two regular
expressions:

ey ~ ey iff Vs € S.(F e; matches s leaving S)) A (F e; matches s leaving Si) = S; = Sa.

One observation is that for the judgment - e matches s leaving S, for some e and s, as
s is always a finite string by construction, any element s’ € S must be a substring of s, and

they share the same suffix up to a certain point, i.e., s = "21” :: 725" :: - -+ :: §. Therefore,
S must be a finite set of strings with size at most length(s) + 1.

For fixed e and s, we can create a TM to check wether for a substring s’ of s, we have
F e; matches s leaving ¢ in finite steps, by enumerating all possible proof trees. Since
there are only finitely many possible combinations of rules (No infinite loops).

Therefore, if S is a finite set of strings, then the whole procedure can be computed by
enumerating each s € S.

On the other hand, if S is infinite, i.e. all possible strings of an alphabet, Lx, then it seems
not to be computable, as structral induction on s would not work, and the TM would have
to enumerate all possible strings. (Rice’s theorem may be relevant?)

Peer Review ID: 311042600 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 5

Peer Review ID: 311042600 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-4

Experiments suggests that the reason of the slowdown is probably the last two test cases
actually called the theory solver Arith.arith, even for only once in each.

In addition, since it’s essentially a brute-force search, the time complexity is exponential
to the number of variables. In these two test cases, there are 3 variables, with means the
number of searches could be up to 2563 ~ 107.

To improve, I would then start with the arithmetic theory module arith.ml. Some nice
alternative can be a branch-and-cut based modern integer programming solver, e.g., CPLEX]
Gurobi, SCIP. Some relevant packages for OCaml are actually available: https://ocaml.
org/p/1lp/0.0.2, https://opam.ocaml.org/packages/lp-gurobi/.

Some potential defects:

e The theory solver is not guaranteed to return a correct answer (model) even it’s satis-
fiable;

e No alerts of the first defect outside the arith module.

Peer Review ID: 311042600 — enter this when you fill out your peer evaluation via gradescope



