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Exercise 3F-1. Regular Expression, Large-Step [10 points]. Give large-step opera-
tional semantics rules of inference for the other three primal regular expressions.

F e; matches s leaving s” F e, matches s” leaving s’
F e;e; matches s leaving s’

The above rule is for the expression ejes. It first evaluates e; on the original s, leaving
s”, and then it evaluates e, on that s”; the result of that being the final result s'.

F e; matches s leaving s’
k- e4|e; matches s leaving s’

F e, matches s leaving s’
F e4|e; matches s leaving s’

The above two rules are for e;|es. Either e; matches with s or ey does.

- empty matches s leaving s
F ex matches s leaving s

- e matches s leaving s” I ex matches s” leaving s’
F ex matches s leaving s

The above two rules are for ex. There are two possibilities here, either there are 0 matches
for e or there are more than 0. In the first case (the first rule), it simply leaves the original
string s, it uses the rule for empty in the hypotheses. In the second case, we match e on s
leaving s”, and then recursively call ex on s”.
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Exercise 3F-2. Regular Expression and Sets [5 points]. You must do one of the
following:

e cither give operational semantics rules of inference for ex and ejes. You may not place
a derivation inside a set constructor, as in: {z | Jy. F e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

It is not possible to provide operational semantics rules of inference given the syntax.
Specifically the note "Each inference rule must have a finite and fixed set of hypotheses”
makes this task impossible.

e, matches s leaving {s'} F ey matches s leaving S
- ejeo matches s leaving S

The above is an attempted rule for e;es. In the rule, we match e; with s leaving a set
of one of the possible results of the match. That one suffix is then used with e, with that
returning the set of all possible suffixes. This rule is technically sound, the result it captures
is true, but it isn’t complete since the first half of the hypotheses only looks at one of the
possible suffixes and ignores the rest.

F empty matches s leaving {s} I e matches s leaving {s'} F e * matches s’ leaving S
e % matches s leaving {s} U S

The above is an attempted rule for ex. Here, we have three hypotheses. The first captures
the case where there are 0 matches for e, which will return a set that is just the original
string s. The next two hypotheses are for the second case where there are more than 0
matches. The first here matches e on s, leaving a set of just one of the possible suffixes, and
then recursively calls ex on that one suffix to produce S. Again, this rule is sound as the set
of suffixes it captures are all true, but it is not complete for the same reason as the previous
rule. The intermediate hypotheses only focuses on one of the possible suffixes, which means
won’t be able to capture all true rules.
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Exercise 3F-3. Equivalence [7 points]. We can determine the equivalence between two
regular expressions by looking at the inversions of the derivations of the rules for the expres-
sions and comparing the elements of the final suffix sets between the two expressions(this is
similar to proving command equivalence in Lecture 6 Slide 44). We can do this analysis be-
cause we define these suffix sets to be deterministic, all cases will be covered for expressions
like el|e2 or ex. To prove inequality, we simply need to come up with an example string s
that would produce different results.

Exercise 3F-4. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

The time sink from these test cases has to do with the Arith.arith method, the function
responsible for determining if there are satisfying assignments for the arithmetic expressions.
This function essentially takes a brute force method where it tries every possible assignment
for every aexp with values ranging from -127 to 128. The runtime for this approach is 256",
where n is the number of aexp in the model. In order to speed this up, a new algorithm
would need to be implemented to perform this task. Something like the Simplex algorithm
would be much faster as it could drastically reduce the search space of possible assignments.

In addition to this method being slow, there’s also an obvious weakness that would
prevent it from even producing the correct answer. The function can only check values
between -127 and 128; if a satisfying assignment were to fall outside of the bounds then
Arith.arith would fail to recognize it. For example, the following SAT formula would cause the
program to return the incorrect answer: (z = 200) . This clearly has a satisfying assignment
(just assign the value 200 to x), but the solver as is will return ” Unsatisfiable.”
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