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Exercise 3F-2. Regular Expression, Large-Step [10 points]. Regular Expressions
are commonly used as abstractions for string matching. Here is an abstract grammar for
regular expressions:

e 3= "%’ singleton — matches the character x
| empty skip — matches the empty string
| e1 e concatenation — matches e; followed by e,
| e1]es or — matches e; or ey
| ex Kleene star — matches 0 or more occurrence of e

matches any single character

|  [’x” —7y”] matches any character between X and y inclusive
| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The last four
cases can be defined in terms of the first five. We also give an abstract grammar for strings
(modeled as lists of characters):

§ m= mnil empty string

|  7x” s string with first character X and other characters s

We write "bye” as shorthand for "b” :: 7y” :: 7e” :: nil. This exercise requires you to give

large-step operational semantics rules of inference related to regular expressions matching
strings. We introduce a judgment:

I e matches s leaving s’

The interpretation of the judgment is that the regular expression e matches some prefix of
the string s, leaving the suffix s’ unmatched. If s’ = nil then r matched s exactly. Examples:

- 7h"("e”+) matches "hello” leaving "110”

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

= ("h” | 7e”)* matches "hello” leaving “ello”
= ("h” | 7e”)* matches "hello” leaving “hello”
= ("h” | 7e”)* matches "hello” leaving 711l0”
Here are two rules of inference:
s="x" ¢
F7x” matches s leaving s F empty matches s leaving s

Give large-step operational semantics rules of inference for the other three primal regular
expressions.
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Solution e; es:

I e; matches s leaving s” I e; matches s” leaving s
I e; eo matches s leaving s

€1 | €.
F e; matches s leaving s; F es matches s leaving so
ey | e; matches s leaving sy Fe1 | ea matches s leaving s;
ex:
e matches s leaving s” F e x matches s” leaving s
F e % matches s leaving s F e x matches s leaving s’
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Exercise 3F-3. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

F e matches s leaving S

And use rules of inference like the following:

F”x” matches s leaving {s' | s ="x" 1 &'}  empty matches s leaving {s}

I e; matches s leaving S+ e; matches s leaving S’
Fe1 | ea matches s leaving SU S’

You must do one of the following:

e cither give operational semantics rules of inference for ex and e;e,. You may not place
a derivation inside a set constructor, as in: {x | Jy. F e matches z leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

e or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

Solution With the current framework, it is not possible to create operational semantics
rules of inferences for ex and e; e5. This is because evaluating ex and e; es involve evaluating
multiple regular expressions in sequence, which cannot be captured by rules with a finite
and fixed set of hypotheses now that the regular expressions leave sets of multiple suffices.
Consider the following incorrect rules of inference:

- e1 matches s leaving {s'} | ea matches s leaving S
F e eo matches s leaving S

F e; matches s leaving S; e, matches s leaving S,
F e1 es matches s leaving S7 U S

These two rules handle the issue of the set of suffices of e; being unknown in two ways. The
top rule only works when e; leaves a singleton, but this rule is incomplete because it cannot
be used to prove E (“h” | “i”)? (“h” | “i”) matches “hi” leaving {“i”, nil} because the first
expression leaves multiple suffices. The bottom rule tries to work with the fixed s, but is un-
sound because it can be used to prove the untrue statement “h” “h” matches “hi” leaving {“i”}
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Exercise 3F-4. Equivalence [7 points|. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation ¢; ~ ¢y for IMP commands. Computing equivalence turned out to
be undecideable: ¢ ~ ¢ iff ¢ halts. We can define a similar equivalence relation for regular
expressions: e; ~ es iff Vs € S. - e; matches s leaving S; A I e; matches s leaving Sy —
S; = S5 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e; ~ e is undecideable by reducing it to the halting problem or
explain in two or three sentences how to compute it. You may assume that I the reader is
familiar with the relevant literature.

Solution It is possible to to determine if two regular expressions are equivalent. Unlike
programs, every finite regular expression will halt when evaluated on a finite input string
because the regular expression evaluation can be described as a finite state machine that
reads through the input string from beginning to end. To determine whether two regular
expressions are equivalent, we can compare the finite state machines that are used to evaluate
them.
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Exercise 3F-5. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect. Com-
ment.

Solution The last two test cases involve a conjunction of four arithmetic clauses and no
Boolean clauses. The bulk of the work for determining if the proposition is satisfiable falls
to a single call to the arithmetic theorem solver. Inspecting how the arithmetic solver works
reveals that its complexity is exponential with respect to the number of variables, explaining
why the last two test cases, which contain four variables, take much longer than the previous
test cases, which contain at most two variables.

To determine if the given arithmetic clauses are satisfiable, the arithmetic solver tries all
possible combinations of values ranging from -127 to 128 for all the given variables to see
if any combination satisfies the given clauses. The number of possible combinations is thus
exponential with respect to the number of variables. This also explains why the second-to-
last test case takes longer than the last test case even though they contain the same number
of variables, as the second-to-last test is unsatisfiable, which the solver only discovers after
completing the exhaustive search, while the last test case is satisfiable, allowing the solver
to terminate early.

Other test cases have more complicated Boolean expressions that rely on the DPLL SAT
solver, but the use of heuristics and a smaller search space makes solving those propositions
faster.

The bounded search space used by the provided arithmetic solver also means that the solver
will report some propositions as unsatisfiable even though the proposition is mathematically
and logically satisfiable. For instance, the solver will report “z < —200” as unsatisfiable.
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