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2 Exercise 3F-2. Regular Expression, Large-Step [10 points].

F e1 matches s1 leaving sy F es matches sy leaving s3

F erea matches s leaving s3

Fe1 matches s1 leaving s

Feilea matches s1 leaving so

F es matches s1 leaving s

Feilea matches s1 leaving so

Fex matches s1 leaving s1

F e matches s1 leaving sy F ex matches so leaving s3

Fex matches s1 leaving s3

3 Exercise 3F-3. Regular Expression and Sets [5 points].

I will claim that operational semantics rules of inference for e and ejes cannot be done correctly
in the given framework.

For ejeq, I attempted the following semantics rule. It turns out that matching e; will always
leave a set of string US; ; for ey to match. The size of such set is finite but not fixed. Therefore,
the subsequent es m;tching can not be expressed clearly. In the given framework, this semantics
rule is incomplete.

Fe1 matches s leaving U S1; F ea matches S11 leaving Sa.1 + ea matches Si2 leaving S22 ....
(A

- eie2 matches s leaving USs j
J

For e*, T attempted the following semantics rule. Here, I tried to consider all the combination
of e* starting from empty, e, ee, eee all the way to the concatenation of infinite number of e. The
number of hypotheses is therefore infinite. My semantics rule is incomplete.

F e matches s leaving S1 F ee matches s leaving So + eee matches s leaving Ss ....
Fex matches s leaving U S;
1

Additionally, if we try to reuse the semantics for e* in 3F-2, we will once again run into the
problem of having unfixed number of S;; in the process of matching e. Additionally, this circular
definition can lead to an infinite loop on expressions such as r = empty*. Therefore, the semantics
is unsound.

In general, operational semantics rules of inference for e and ejes can not be done in the given
framework.
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4 Exercise 3F-4. Equivalence [7 points].

I will claim that the equivalence relation for regular expressions can be computed. The general
idea is to find the corresponding finite state machines for e; and es. Check the equivalence for
finite state machines.

Since the reader is familiar with the relevant literature. I will skip the concept of DFA (De-
terministic Finite Automata). In general, one can always convert a regular expression to DFA as
shown below.

Figure 1: DFA for ab* and a(b*|bcb)

New that we can find the DFA M; and My for regular expression e; and ey, we can check
equivalence by running BFS on M; and Ms. After compressing the paths of M; and My using
Hopcroft /Ullman algorithm, we perform BFS on M; and Ms in parallel. Every time we first hit a
node in the BFS, we record the correspondence for such node between M; and M>. When we hit a
node for the second time, we can check equivalence by confirming if its correspondence established
before is still preserved. Therefore, this process is decidable.

Additionally, proving DFA equivalence is decidable can be considered as a graph isomorphism
problem, which is decidable.

5 Exercise 3F-5. SAT Solving [6 points].

The last two tests take a comparatively long time since we are performing the backtracking
based search in our implementation. Since the last two test cases have a relatively large search
space, the time to finish last two test cases can be long.

In particular, for Arithmetic model, the current implementation will perform exhaustive bounded
search in the function bounded_search. Since bounded_search is called recursively, exhaustive
bounded search between lower bound to upper bound is performed recursively. As a result, the
time complexity can go up to exponential. As the search space expands, the running time can be
extremely long. To improve the current implementation, we can simply replace this search algo-
rithm with binary search. The time complexity will then be reduced to polynomial, which is more
reasonable.
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