13F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 68551769 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 3F-2

For the or operation, we define the following two rules of inference, one for each expression

that makes up the or.
- e; matches s leaving s

e | e matches s leaving s

I e; matches s leaving s”

ke | e matches s leaving s”

For concatenation, we define the following rule of inference.

I e; matches s leaving s |+ e; matches s’ leaving s”

I ejeo matches s leaving s”

Finally, for the Kleene star, we define two more rules of inference. The first corresponds to
the case where we match zero occurences of e.

I ex matches s leaving s
The second corresponds to the case where we match one or more occurences of e.

F e matches s leaving s’ F e* matches s leaving s”

Fex matches s leaving s”

Exercise 3F-3

We claim that it is not possible to define large step operational semantics for concatenation
and the Kleene star in this framework. The key problem that arises comes from the fact that
both of these operations require matching on one expression on s and then matching another
expression on whatever string is left by the first expression. However, because matching the
first expression leaves (potentially) more than one suffix, it is impossible to define a correct
rule of inference for either of these operations. As a demonstration, consider the following
two attempted inference rules for concatenation.

F e; matches s leaving S; (3¢’ € Si.F ey matches s’ leaving S)

I eje; matches s leaving S

This rule of inference is unsound because it is not deterministic. For example if e; = ‘a’ |

‘aa’, e = ‘@’ and s = ‘aaa’, then this rule of inference would allow us to conclude
- eje2 matches s leaving {‘a’} and k- ejes matches s leaving {‘’} but our goal in
this extended definition was for the operational semantics to be deterministic. Additionally
we could try the following rule.

F e, matches s leaving S; (Vs € S;.F ey matches s’ leaving 9S5)

I eje; matches s leaving S

But again, this is incorrect; this time it is incomplete. Taking e, es and s as before, this rule
would make it so that there is no set S such that we can conclude - e;e5 matches s leaving S,
but our intuition about regular expressions would lead us to want S = {‘a’, “*} to suffice.

Peer Review ID: 68551769 — enter this when you ﬁlb out your peer evaluation via gradescope

2 3F-2 Regular Expressions, Large Step
- 0 pts Correct

Peer Review ID: 68551769 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 3F-2

For the or operation, we define the following two rules of inference, one for each expression

that makes up the or.
- e; matches s leaving s

e | e matches s leaving s

I e; matches s leaving s”

ke | e matches s leaving s”

For concatenation, we define the following rule of inference.

I e; matches s leaving s |+ e; matches s’ leaving s”

I ejeo matches s leaving s”

Finally, for the Kleene star, we define two more rules of inference. The first corresponds to
the case where we match zero occurences of e.

I ex matches s leaving s
The second corresponds to the case where we match one or more occurences of e.

F e matches s leaving s’ F e* matches s leaving s”

Fex matches s leaving s”

Exercise 3F-3

We claim that it is not possible to define large step operational semantics for concatenation
and the Kleene star in this framework. The key problem that arises comes from the fact that
both of these operations require matching on one expression on s and then matching another
expression on whatever string is left by the first expression. However, because matching the
first expression leaves (potentially) more than one suffix, it is impossible to define a correct
rule of inference for either of these operations. As a demonstration, consider the following
two attempted inference rules for concatenation.

F e; matches s leaving S; (3¢’ € Si.F ey matches s’ leaving S)

I eje; matches s leaving S

This rule of inference is unsound because it is not deterministic. For example if e; = ‘a’ |

‘aa’, e = ‘@’ and s = ‘aaa’, then this rule of inference would allow us to conclude
- eje2 matches s leaving {‘a’} and k- ejes matches s leaving {‘’} but our goal in
this extended definition was for the operational semantics to be deterministic. Additionally
we could try the following rule.

F e, matches s leaving S; (Vs € S;.F ey matches s’ leaving 9S5)

I eje; matches s leaving S

But again, this is incorrect; this time it is incomplete. Taking e, es and s as before, this rule
would make it so that there is no set S such that we can conclude - e;e5 matches s leaving S,
but our intuition about regular expressions would lead us to want S = {‘a’, “*} to suffice.

Peer Review ID: 68551769 — enter this when you ﬁlb out your peer evaluation via gradescope

3 3F-3 Regular Expressions and Sets
- 0 pts Correct

Peer Review ID: 68551769 — enter this when you fill out your peer evaluation via gradescope

Page 7

Exercise 3F-4

We claim that determining whether e; ~ e, is undecidable. It suffices to demonstrate a
reduction to the problem of determining whether two IMP programs are equivalent, because
we have shown in class that that is undecidable. We will create a map A that converts IMP
programs into regular expressions. Define A recursively by pattern matching as follows:

A(skip) = empty
Afey; e

A(if b then c¢; else ¢
A(while b do ¢

~— — — ~— ~—
I
i
5
&)
= .o
~—
oS
—
=)
™)
~—

Where [a] is meant to indicate that the expression a is written out as a string (not just
the character ‘a’). Now for any IMP program ¢, note the following things about A(c). First,
the only literal strings that appear in A(c) correspond to variable assignments, and otherwise
A(c) preserves the possible control flow paths of ¢. So, if A(c) matches a given string, the
matched portion is a valid sequence of variable assignments that could appear (in order)
in an execution of ¢. Next, because the regular expression or operator and Kleene star are
both non-deterministic, A(c) will match strings that correspond to any possible sequence of
assignments that could occur in an execution of c.

Let ¢y, ¢y are IMP programs. We will show that ¢; =~ ¢ <= A(cy) ~ A(cp). First, if
¢1 & ¢, then, for all 0,0’ (c1,0) || 0/ <= (c2,0) | 0'. So, if we have a string s such that
A(c1) matches s leaving S; and A(cy) matches s leaving Sz, we wish to show that
S1 = 95. Because we presuppose that they both match s, we are already guaranteed that
c; and ¢, make assignments in the same order (when executed in states that correspond to
s). Moreover, if A(c;) matches some substring of s leaving s; € S, that corresponds to an
execution of ¢; with some starting state o resulting in some o’. Because ¢; ~ ¢y, we then
have that (co,0) |} 0’ evaluates to the same final state. But, since s is a sequence of variable
assignments, this means that A(cy) must also match s; because s; corresponds directly to
the state o’ (because it corresponds to starting from o executing the sequence of variable
assignments contained in s;). Thus we have s; € Sy and, since s; was arbitrary, we conclude
S1 C S5. Then, symmetrically, we have Sy C S; and thus S; = Sy as desired.

Next suppose A(c1) ~ A(cg). This means that, for any s € S, if A(¢;) matches s leaving S;
and A(cy) matches s leaving Ss, then S; = S;. Let 0,0’ be states such that (¢i,0) | o'.
We wish to show that (c1, o) {} ¢’. Let s be the sequence of variable assignments that occur in
the execution of (¢1, o). By construction of A(c;), we then have that A(c;) matches s leaving Sj,
and, moreover, that the empty string ¢ is contained in S;. Then, because A(c;) ~ A(c),
we get that A(c2) matches s leaving S;. Hence there is an execution of ¢y that exactly
matches the sequence of variable assignments in s. But this must precisely mean that
(ca,0) |} 0’ because ¢’ is exactly what is obtained by starting with ¢ and executing all the
variable assignments in s. Thus we conclude that ¢; ~ ¢y as desired.

Finally, define the following reduction from the IMP program equivalence problem that
uses a decision oracle for regular expression equivalence problem as a black box. Given IMP
programs ¢y, c2, compute A(c;) and A(cz) and call the oracle with (A(cy), A(cs)), return

Peer Review ID: 68551769 — enter this when you ﬁ% out your peer evaluation via gradescope

YES if and only if it does. This reduction is correct by the argument given above. Thus we
have shown that determining whether regular expressions are equivalent is an undecidable
problem.

Exercise 3F-5

Looking at the last two test cases, we can see that both are already in CNF form and
moreover that each clause contains only one literal. This makes these two test cases fairly
trivial for the DPLL portion of the SMT solver, because it can use the unit clause heuristic
to conclude that every one of these literals must be true.

From this we can conclude that the performance bottleneck in running these two test
cases comes from the arithmetic solver. Indeed, upon further inspection, we realize that the
arithmetic solver used in this assignment simply brute forces satisfiability by enumerating
over all possible (integer) values of the variables (within some arbitrary bounds) and checking
whether each possible assignment satisfies. This is incredibly inefficient, having runtime
O(256™) where n is the number of arithmetic variables.

In order to improve the performance of this SMT solver, we would focus our efforts
on improving the arithmetic solver. One possible option would be to replace the current
arithmetic solver algorithm with the simplex method (or one of its variants) discussed in
class.

Peer Review ID: 68551769 — enter this when you ﬁl}iout your peer evaluation via gradescope

4 3F-4 Equivalence
- 0 pts Correct

Peer Review ID: 68551769 — enter this when you fill out your peer evaluation via gradescope

Page 10

YES if and only if it does. This reduction is correct by the argument given above. Thus we
have shown that determining whether regular expressions are equivalent is an undecidable
problem.

Exercise 3F-5

Looking at the last two test cases, we can see that both are already in CNF form and
moreover that each clause contains only one literal. This makes these two test cases fairly
trivial for the DPLL portion of the SMT solver, because it can use the unit clause heuristic
to conclude that every one of these literals must be true.

From this we can conclude that the performance bottleneck in running these two test
cases comes from the arithmetic solver. Indeed, upon further inspection, we realize that the
arithmetic solver used in this assignment simply brute forces satisfiability by enumerating
over all possible (integer) values of the variables (within some arbitrary bounds) and checking
whether each possible assignment satisfies. This is incredibly inefficient, having runtime
O(256™) where n is the number of arithmetic variables.

In order to improve the performance of this SMT solver, we would focus our efforts
on improving the arithmetic solver. One possible option would be to replace the current
arithmetic solver algorithm with the simplex method (or one of its variants) discussed in
class.

Peer Review ID: 68551769 — enter this when you ﬁl}iout your peer evaluation via gradescope

5 3F-5 SAT Solving
- 0 pts Correct

Peer Review ID: 68551769 — enter this when you fill out your peer evaluation via gradescope

Page 12

