Questions assigned to the following page: 2, 3, 4, and 5

Peer Review ID: 311038335 — enter this when you fill out your peer evaluation via gradescope



Exercise 3F-1.

e; matches s leaving s’ e, matches s’ leaving s”

e1eo matches s leaving s”

e; matches s leaving s’

e1]es matches s leaving s’

ey matches s leaving s’

e1]es matches s leaving s’

empty|ee* matches s leaving s’

€* matches s leaving s’

Exercise 3F-2. This is not possible because for a concatenation eje,, the place where
es begins matching is determined by the number of characters e; consumes. e; may consume
any number of characters so we must check if es matches at every index, but this we cannot
do because we need a fixed number of premises.

We could try

e; matches s leaving S s’ = min(S) ey matches s’ leaving S’

e1es matches s leaving S’

This is deterministic and sound, but it is incomplete because ”a”*”bh” doesn’t match ”ab”
We could try

e1ez2 matches s leaving {}

2N

This is deterministic and complete, but it is unsound because ”a””bh” matches

Exercise 3F-3.

Convert both expressions into DFAs and use DFA minimization (Wikipedia article) to find
their corresponding unique minimal automata. The two expressions are equivalent iff their
corresponding minimal automata are structurally identical. This can be computed by brute
force checking if a bijective mapping of states exists where all edges match.

Exercise 3F-4.

Both test case 35 and 36 contain three integer variables. The integer arithmetic solver being
used is brute force (arguably an egregious defect), so it tries every possible assignment of
variables. Since the range being considered is —127 to 128, 256° combinations of variables

Peer Review ID: 311038335 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 5

Peer Review ID: 311038335 — enter this when you fill out your peer evaluation via gradescope



must be tested when the arithmetic solver is called with all three variables. The problem
would be even worse if the arithmetic solver was called multiple times, but fortunately for
both of these queries, DPLL(T) only calls the theory solver once. Case 36 is slightly faster
than case 35 because case 36 short circuits when a satisfying assignment is found but case
35 is unsatisfiable so the full search space must be checked. This issue could be alleviated if
with a smarter integer arithmetic solver.

Peer Review ID: 311038335 — enter this when you fill out your peer evaluation via gradescope



