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Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following inductive proof that
“All flowers smell the same”. Please indicate exactly which sentences are wrong in the proof via highlighting
or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F. (The range of
smells is not so important, but we’ll assume that it admits equality.) We’ll also assume that F' is countable.
Let the property P(n) mean that all subsets of F' of size at most n contain flowers that smell the same.

P(n) €vX e P(F). |X|<n = (Vf,f € X. smells(f) = smells(f"))
(the notation |X| denotes the number of elements of X)

One way to formulate the statement to prove is ¥n > 1.P(n). We'll prove this by induction on n, as
follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the same (by the
definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n contain flowers that
smell the same. We will prove that the same thing holds for all subsets of size at most n+ 1. Pick an arbitrary
set X such that | X| = n+ 1. Pick two distinct flowers f, f € X and let’s show that smells(f) = smells(f’).
Let Y = X — {f} and Y/ = X — {f'}. Obviously Y and Y’ are sets of size at most n so the induction
hypothesis holds for both of them. Pick any arbitrary x € Y NY’. Obviously, x # f and x # f’. We have
that smells(f’) = smells(z) (from the induction hypothesis on Y') and smells(f) = smells(z) (from the induction
hypothesis on Y”). Hence smells(f) = smells(f’), which proves the inductive step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the word “obviously”
=)

Remark: This proof breaks down when picking aribtirary x € Y NY”’ because such an x may not exist. As
such, we cannot apply the inductive hypothesis to Y or Y’ and the inductive step, so the theorem has not

been proven true.

(Indeed, though we have both P(1) and ¥n > 2.P(n) — P(n + 1), it is not the case that P(1) — P(2);
we could easily find a counterezample of two distinct flowers smelling different to prove the “theorem” false.)
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Exercise 2F-3. While Induction [10 points]. We want to prove that
(while bdo z:=2 + 2,0) | 0/ = Vb € BExp.Vo € . initial state o s.t. o(z) is even = ¢’'(z) is even

We let z, 0 such that x is intially even, o', and D :: (while bdo z := x + 2,0) || ¢/ be arbitrary.
We proceed by induction on the structure of the derivation D. Our inductive hypothesis assumes the desired
property holds for subderivations of D.

By inversion, the last rule used in the derivation D must be while false or while true. The base case is
where only one rule is ever applied to get D: while false. We never execute the loop body in this case, so
o'(z) = o(z), meaning that if o(z) is even, then o’(z) is certainly even as well.

The inductive cases have some number of applications of the while true rule. We first consider the inductive
case where the last rule used in D is while false:

e By inversion, D; :: (b,o1) | false, so the loop body is not executed and o7 is unchanged. By the
inductive hypothesis on D2 :: (while bdo z := x + 2,0) || oy, if Dy had initial state o such that o(z)
was even, then Dy’s ending state o; must also have o;(x) even. As D; does nothing to the state o4
when the last rule is while false, D’s ending state ¢’ = o1, so o’(z) is even as well.

We then consider the inductive case where the last rule used in D is while true:

e By inversion, D; :: (b,01) |} true, Dy :: (x :==x + 2,01) |} 09, and D3 :: (while bdo x:= x + 2,09) |
o’. By the inductive hypothesis on D4 :: (while b do z := x + 2,0) | oy, if Dy had initial state o
such that o(z) was even, then D,’s ending state o; must also have o1(z) even. Dy adding 2 to an even
number oy (z), which maintains its parity, so oa(x) is even as well. By the inductive hypothesis on Ds,
since o9(x) is even, it follows that o'(x) is also even.

The above rules comprise all possible boolean expressions as every boolean expression must evaluate to true
or false. As we’ve shown via structural induction on D, a while loop whose ¢ only adds 2 to a starting value
x preserves ’s even parity.
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Exercise 2F-4. Language Features, Large-Step [12 points].
throwing an arithmetic expression leads to terminating in an exception state where the evaluation of that
expression is raised:

(e,0) I n

(throw e, o) |} o exc n

trying a command that terminates normally just executes that command:

(c1,0) U o’

(try ¢; catch x ¢, 0) || o’

trying a command that raises an exception leads to storing that exception value in memory, then executing
the (possibly good, possibly exception-raising) command cs:

(cr,0) o’ exen (x:=n,0') | o'[x:=n] (e, [z:=n]){t
(try ¢; catch x ¢o,0) | ¢

if ¢; terminates normally, finally just executes ¢y a la the seq2 command:

(c1,0) b o' (co,0) It
(after ¢y finally co,0) | ¢

if ¢; terminates with an exception n; and ¢y terminates normally, finally re-throws n; at the end of the
finally block:
(cr,0) J o’ excny {eo,0") 0"  (throw ny,0”) | 0 exc ng
(after ¢; finally co, 0) || 0” exc ng
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if ¢1 terminates with an exception n; and ¢, terminates with an exception ng, finally lets ny be thrown:

(c1,0) Y o’ excny {co,0") | 0” exc ng

(after ¢; finally ¢y, 0) || 0” exc ny

Exercise 2F-4. Language Features, Analysis [6 points]. I posit that using small-step contextual
semantics would be a more natural way of describing “IMP with exceptions” than large-step contextual
semantics. As exceptions are largely used for error-handling and control flow where the details of which
steps are taken when are important, expressing these details in redexes that are atomitcally reduced within
contexts is more useful for reasoning about the intricacies of a langugage’s exception rules. Instead of having
to update the previous large-step command rules to account for exceptions, we can just add some redexes and
reduction rules to capture the additional behavior that’s now possible in IMP. Adding rules when adding new
functionality seems more natural and elegant than both adding new rules and modifying old ones. Further,
redexes could more elegant express things like a throw statement causing a while loop to be exited abrutly
and seem to more naturally account for all the types of behavior potentially introduced by exceptions.

Exercise 2C. Language Features, Coding. See submission at autograder.io
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if ¢1 terminates with an exception n; and ¢, terminates with an exception ng, finally lets ny be thrown:

(c1,0) Y o’ excny {co,0") | 0” exc ng

(after ¢; finally ¢y, 0) || 0” exc ny

Exercise 2F-4. Language Features, Analysis [6 points]. I posit that using small-step contextual
semantics would be a more natural way of describing “IMP with exceptions” than large-step contextual
semantics. As exceptions are largely used for error-handling and control flow where the details of which
steps are taken when are important, expressing these details in redexes that are atomitcally reduced within
contexts is more useful for reasoning about the intricacies of a langugage’s exception rules. Instead of having
to update the previous large-step command rules to account for exceptions, we can just add some redexes and
reduction rules to capture the additional behavior that’s now possible in IMP. Adding rules when adding new
functionality seems more natural and elegant than both adding new rules and modifying old ones. Further,
redexes could more elegant express things like a throw statement causing a while loop to be exited abrutly
and seem to more naturally account for all the types of behavior potentially introduced by exceptions.

Exercise 2C. Language Features, Coding. See submission at autograder.io
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