Question 2
Find the flaw in the following inductive proof.

Proof. Let F be the set of all flowers and let smells(f) be the smell of the flower f € F.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F of size
at most n contain flowers that smell the same.

P(n) € VX € P(F). |X|<n = (Vf, f € X. smells(f) = smells(f"))

(the notation | X| denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We'll prove this by induction
on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the same

(by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F of size at most n contain
flowers that smell the same. We will prove that the same thing holds for all subsets of size
at most n 4+ 1. Pick an arbitrary set X such that |X| = n + 1. Pick two distinct flowers
f, [€ X and let’s show that smells(f) = smells(f’). Let Y = X —{f} and V' = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both of
them. Pick any arbitrary x € Y N Y".

Obviously, z # f and x # f’. We have that smells(f') = smells(z) (from the induction
hypothesis on V') and smells(f) = smells(z) (from the induction hypothesis on Y”). Hence
smells(f) = smells(f"), which proves the inductive step, and the theorem. O

Summary: The inductive step from n =1 to n = 2 is not valid.

Peer Review ID: 306451207 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 306451207 — enter this when you fill out your peer evaluation via gradescope

Question 3
Proof. Let o be an arbitrary state such that o(z) is even. We rename the command add?2 :=
“r:=x + 2" to save space.

We will do structural induction on the derivation/construction of (while b do add2, o) |
o', (and implicitly on the Boolean expression b), based on inversion and determinism.

For any Boolean expression b, by the derivation rules, we must have either (b, o) |} false
or (b, o) | true.

Base case: When (b, o) |} false, we have

D' (b, o) || false

base
D :: (while b do add2, o) | o

Since o(x) is even, the returned state is just o(x) = o(z) which is also even.

Induction: When (b, o) |} true, and (add2,o) |} ¢”. The inductive hypothesis is: If o”(z)
is even, and (while b do add2, ¢”) | o/, then o'(x) is even. We then have the following
inference by inversion of while-true and seq:

s o Tes , — IH
D :: (add2,0) | o Dy :: (while b do add2, ¢”) | o

D' :: (add2; while b do add2, o) | o’
D :: (while b do add2, o) | o’

Dy :: (b, o) || true

seq

while-true

The res rule implies that ¢”(z) = o(x) + 2 by definition. Since o(z) € Z is even, then
o"(x) € Z is also even by integer arithmetic. Then by the inductive hypothesis, we get o'(x)
is even.

Therefore by induction, we have proved the property for all possible derivations of the while
loop (while b do add2, o) | ¢’, for all Boolean expressions b. O

Peer Review ID: 306451207 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 4 and 5

Peer Review ID: 306451207 — enter this when you fill out your peer evaluation via gradescope

Question 4

The rules for the new commands are as follows, with one for throw, two for try-catch, and
three for after-finally:

(z, o) I n

(throw z, o) | o exc n

throw

(c1, o)y I o

(try ¢ catch x co, o) | o

; try-catch-normal

{c1, o) | o’ exc e (ca, o'z :=¢]) I £

try-catch-exceptional
(try ¢ catch z ¢y, o) |t

(c1, o) I o (co, o) I t

- after-finally-normal
(after ¢; finally co, o) | ¢

(e, o) | 0’ exc e (co, 0’y I 0"

(after ¢ finally cy, o) | 0" exc ¢

after-finally-exc-normal

(c1, o) Il o’ exc e (c2, o) |} 0" exc ey

after-finally-exc-exc
(after ¢ finally cp, o) | 0” exc e ¥

Question 5

I feel the large-step operational semantics for the exception would be generally simpler
and more elegant than the small-step contextual semantics, as they are essentially “large-
step”. Each of the reference rules above could correspond to multiple steps in the contextual
semantics reduction. In particular, the contextual semantics may also have to keep track
of the extra exceptional argument in each step of the execution, which could make it less
succinct.

Peer Review ID: 306451207 — enter this when you fill out your peer evaluation via gradescope

