12F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 65760814 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 2F-2

The flaw occurs in the Induction Step, which is copied here with the first
point of issue highlighted:

Let n be arbitrary and assume that all subsets of F' of size at most n contain
flowers that smell the same. We will prove that the same thing holds for all
subsets of size at most n+ 1. Pick an arbitrary set X such that | X|=n+1.
Pick two distinct flowers f, f* € X and let’s show that smells(f) = smells(f”).
Let Y = X —{f}and Y/ = X — {f’}. Obviously Y and Y’ are sets of size at
most n so the induction hypothesis holds for both of them. Pick any arbi-
trary € Y NY’. Obviously, x # f and x # f’. We have that smells(f’) =
smells(z) (from the induction hypothesis on Y) and smells(f) = smells(z)
(from the induction hypothesis on Y”'). Hence smells(f) = smells(f’), which
proves the inductive step, and the theorem.

At this point in the proof, we aren’t guaranteed that Y NY’ # &, so we might
not be able to pick an arbitrary x € Y NY’. This can occur when n = 1,
so|X|=2and X ={f,f'} = Y ={f'} and Y’ = {f}. This causes the
inductive argument to fall apart, since we can’t prove by this method that
all sets of 2 distinct flowers have those flowers smelling the same.

Exercise 2F-3

Restating our big-step rules for the while command is a good start:

(b, o) | false (b,o) |} true (c,0) || ¢” (while bdoc,d”) | o
(whilebdoc,0) | o (while bdo ¢,0) | o

We'll prove by induction on the structure of derivations formed by the com-
mand W = (while b do x := = + 2) using these rules. The property we want
to show for all derivations D is:

P(D) =o(x) even,D :: (W,0) || 0/ = o'(x) even

Note that we can recursively define our derivations in terms of the following
(where D' < D; my definition of D may be abusing notation a bit, but I

Peer Review ID: 65760814 — enter this when you fill out your peer evaluation via gradescope

2 2F-2 Mathematical Induction
- 0 pts Correct

Peer Review ID: 65760814 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 2F-2

The flaw occurs in the Induction Step, which is copied here with the first
point of issue highlighted:

Let n be arbitrary and assume that all subsets of F' of size at most n contain
flowers that smell the same. We will prove that the same thing holds for all
subsets of size at most n+ 1. Pick an arbitrary set X such that | X|=n+1.
Pick two distinct flowers f, f* € X and let’s show that smells(f) = smells(f”).
Let Y = X —{f}and Y/ = X — {f’}. Obviously Y and Y’ are sets of size at
most n so the induction hypothesis holds for both of them. Pick any arbi-
trary € Y NY’. Obviously, x # f and x # f’. We have that smells(f’) =
smells(z) (from the induction hypothesis on Y) and smells(f) = smells(z)
(from the induction hypothesis on Y”'). Hence smells(f) = smells(f’), which
proves the inductive step, and the theorem.

At this point in the proof, we aren’t guaranteed that Y NY’ # &, so we might
not be able to pick an arbitrary x € Y NY’. This can occur when n = 1,
so|X|=2and X ={f,f'} = Y ={f'} and Y’ = {f}. This causes the
inductive argument to fall apart, since we can’t prove by this method that
all sets of 2 distinct flowers have those flowers smelling the same.

Exercise 2F-3

Restating our big-step rules for the while command is a good start:

(b, o) | false (b,o) |} true (c,0) || ¢” (while bdoc,d”) | o
(whilebdoc,0) | o (while bdo ¢,0) | o

We'll prove by induction on the structure of derivations formed by the com-
mand W = (while b do x := = + 2) using these rules. The property we want
to show for all derivations D is:

P(D) =o(x) even,D :: (W,0) || 0/ = o'(x) even

Note that we can recursively define our derivations in terms of the following
(where D' < D; my definition of D may be abusing notation a bit, but I

Peer Review ID: 65760814 — enter this when you fill out your peer evaluation via gradescope

think the intent is clear):

(b, o) | false
(whilebdox :=z+2,0) |0

DO =

(b,o) | true (z:=x+2,0) 0" D = (W,o") |
(whilebdox =z +2,0) | o’

D =

First, consider the base case of Dy. Here, (W,o) || ¢/ = o certainly has the
property that o(x) being even = o'(z) = o(x) is even.

For the inductive case, assume all derivations D’ < D have the desired
property, and consider the derivation of D defined above. The property holds
for the derivation of (x := z+2,0) || ¢”; it is a basic mathematical fact that
o(x) even = ¢”(z) even in this case. And since ¢”(x) is even, we can use
the inductive assumption to conclude that o’(z) is even as well, since D’ < D
and D' :: (W, 0") | o'

As such, by structural induction, all possible derivations D of the com-
mand W must adhere to property P. This means that for all b, ¢, o:

o(z) even, (whilebdo x :=x +2) || o/ = o’'(z) even

Exercise 2F-4

First, we have a simple rule for the throw command:

(e,o) I n

(throw e, o) || 0 excn

And two rules for the try-catch command:

{c1,0) 4 o’ {cr,o) b o' excn (x:=mn,0") 0" (c,0") |1

(try ¢; catch z ¢o,0) | o (try ¢ catch z ¢o,0) || t

Peer Review ID: 65760814 — enter this when you fill out your peer evaluation via gradescope

3 2F-3 While Induction
- 0 pts Correct

Peer Review ID: 65760814 — enter this when you fill out your peer evaluation via gradescope

Page 8

think the intent is clear):

(b, o) | false
(whilebdox :=z+2,0) |0

DO =

(b,o) | true (z:=x+2,0) 0" D = (W,o") |
(whilebdox =z +2,0) | o’

D =

First, consider the base case of Dy. Here, (W,o) || ¢/ = o certainly has the
property that o(x) being even = o'(z) = o(x) is even.

For the inductive case, assume all derivations D’ < D have the desired
property, and consider the derivation of D defined above. The property holds
for the derivation of (x := z+2,0) || ¢”; it is a basic mathematical fact that
o(x) even = ¢”(z) even in this case. And since ¢”(x) is even, we can use
the inductive assumption to conclude that o’(z) is even as well, since D’ < D
and D' :: (W, 0") | o'

As such, by structural induction, all possible derivations D of the com-
mand W must adhere to property P. This means that for all b, ¢, o:

o(z) even, (whilebdo x :=x +2) || o/ = o’'(z) even

Exercise 2F-4

First, we have a simple rule for the throw command:

(e,o) I n

(throw e, o) || 0 excn

And two rules for the try-catch command:

{c1,0) 4 o’ {cr,o) b o' excn (x:=mn,0") 0" (c,0") |1

(try ¢; catch z ¢o,0) | o (try ¢ catch z ¢o,0) || t

Peer Review ID: 65760814 — enter this when you fill out your peer evaluation via gradescope

And three rules for the after-finally command:

(c1,0) 4o’ (co,0") It
(after ¢; finally cp,0) | ¢

(c1,0) J o' excn (cg,0") | 0” (c1,0) | 0’ excny {cg,0") || 0" exc ny

(after ¢y finally co,0) |} 0" excn (after ¢y finally cg,0) | 0” exc ny

Exercise 2F-5

It would be simpler to describe “IMP with exceptions” using small-step con-
textual semantics as opposed to large-step operational semantics. This is
because the idea of certain commands being reduced before others (like the
try block before the catch block in try-catch) can be baked into the contexts,
making for a more intuitive representation of try-catch and after-finally.
Not only that, but the modification of certain existing redexes/reduction
rules would be simpler. In doing the coding part of this assignment, I realized
that the addition of exceptions would require some modifications/additions
to the large-step rules for while. But with the unraveling method that
small-step semantics use for while, the new exceptional case (of a command
throwing an exception in a while loop) could be handled by modifications
only to the sequencing reduction rule(s) of redex (skip, ¢). This would
streamline the addition of exceptions a little bit over their addition in the
large-step semantics.

Peer Review ID: 65760814 — enter this when you fill out your peer evaluation via gradescope

4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65760814 — enter this when you fill out your peer evaluation via gradescope

Page 11

And three rules for the after-finally command:

(c1,0) 4o’ (co,0") It
(after ¢; finally cp,0) | ¢

(c1,0) J o' excn (cg,0") | 0” (c1,0) | 0’ excny {cg,0") || 0" exc ny

(after ¢y finally co,0) |} 0" excn (after ¢y finally cg,0) | 0” exc ny

Exercise 2F-5

It would be simpler to describe “IMP with exceptions” using small-step con-
textual semantics as opposed to large-step operational semantics. This is
because the idea of certain commands being reduced before others (like the
try block before the catch block in try-catch) can be baked into the contexts,
making for a more intuitive representation of try-catch and after-finally.
Not only that, but the modification of certain existing redexes/reduction
rules would be simpler. In doing the coding part of this assignment, I realized
that the addition of exceptions would require some modifications/additions
to the large-step rules for while. But with the unraveling method that
small-step semantics use for while, the new exceptional case (of a command
throwing an exception in a while loop) could be handled by modifications
only to the sequencing reduction rule(s) of redex (skip, ¢). This would
streamline the addition of exceptions a little bit over their addition in the
large-step semantics.

Peer Review ID: 65760814 — enter this when you fill out your peer evaluation via gradescope

5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65760814 — enter this when you fill out your peer evaluation via gradescope

Page 13

