12F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 65765509 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in
the following inductive proof that “All flowers smell the same”. Please indicate
exactly which sentences are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the
flower f € F. (The range of smells is not so important, but we’ll assume that it
admits equality.) We’ll also assume that F' is countable. Let the property P(n)
mean that all subsets of F' of size at most n contain flowers that smell the same.

P(n) € VX € P(F). |X|<n = (Vf,f € X. smells(f) = smells(f’))

(the notation |X| denotes the number of elements of X)

One way to formulate the statement to prove is ¥n > 1.P(n). We’ll prove
this by induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers
that smell the same (by the definition of P(n)).

Induction Step: Let m be arbitrary and assume that all subsets of F' of
size at most m contain flowers that smell the same. We will prove that the
same thing holds for all subsets of size at most n + 1. Pick an arbitrary set
X such that |X| = n 4+ 1. Pick two distinct flowers f, f € X and let’s show
that smells(f) = smells(f’). Let Y = X — {f} and Y’ = X — {f'}. Obvi-
ously Y and Y’ are sets of size at most n so the induction hypothesis holds
for both of them. Pick any arbitrary x € Y NY’. Obviously, z # f and
x # f’. We have that smells(f’) = smells(z) (from the induction hypothesis
on Y) and smells(f) = smells(z) (from the induction hypothesis on Y”). Hence
smells(f) = smells(f”), which proves the inductive step, and the theorem.

Reasoning for Highlighted Lines: The highlighted line claims all subsets
of F size at most n have elements which all smell the same. This is assuming
the proof. If all subsets of F size 2 smell the same, this means all possible pairs
of flowers must smell the same. If we assume that all flowers in F smell the
same, we can prove such a set of flowers has elements which all smell the same,
obviously. Consider a set larger than size n with elements that do not smell the
same:

X = {f1 — Sweet, fo — Sweet, f3 — Sweet, fy — Disgusting, f5 — Sweet}
Assume n = 4. Then remove a single element (lets remove f.).
X = {f2 — Sweet, f5 — Sweet, f4 — Disgusting, fs — Sweet}

This clearly contradicts our hypothesis, as it’s a subset size n which all elements
do not smell the same. The circular reasoning “assume proof, therefore proof”
is the issue here.

Exercise 2F-3. While Induction [10 points]. There are two cases which
we must consider because of the boolean, b. We consider the true case first.

D1 :: (byo) true D2 :: (z:=x+2,0) 0" D3 : (whilebdoz:=z+2,0') 0"

D :
(whilebdo z:=xz+2,0) | o”

Peer Review ID: 65765509 — enter this when you fill out your peer evaluation via gradescope

2 2F-2 Mathematical Induction
- 0 pts Correct

Peer Review ID: 65765509 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in
the following inductive proof that “All flowers smell the same”. Please indicate
exactly which sentences are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the
flower f € F. (The range of smells is not so important, but we’ll assume that it
admits equality.) We’ll also assume that F' is countable. Let the property P(n)
mean that all subsets of F' of size at most n contain flowers that smell the same.

P(n) € VX € P(F). |X|<n = (Vf,f € X. smells(f) = smells(f’))

(the notation |X| denotes the number of elements of X)

One way to formulate the statement to prove is ¥n > 1.P(n). We’ll prove
this by induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers
that smell the same (by the definition of P(n)).

Induction Step: Let m be arbitrary and assume that all subsets of F' of
size at most m contain flowers that smell the same. We will prove that the
same thing holds for all subsets of size at most n + 1. Pick an arbitrary set
X such that |X| = n 4+ 1. Pick two distinct flowers f, f € X and let’s show
that smells(f) = smells(f’). Let Y = X — {f} and Y’ = X — {f'}. Obvi-
ously Y and Y’ are sets of size at most n so the induction hypothesis holds
for both of them. Pick any arbitrary x € Y NY’. Obviously, z # f and
x # f’. We have that smells(f’) = smells(z) (from the induction hypothesis
on Y) and smells(f) = smells(z) (from the induction hypothesis on Y”). Hence
smells(f) = smells(f”), which proves the inductive step, and the theorem.

Reasoning for Highlighted Lines: The highlighted line claims all subsets
of F size at most n have elements which all smell the same. This is assuming
the proof. If all subsets of F size 2 smell the same, this means all possible pairs
of flowers must smell the same. If we assume that all flowers in F smell the
same, we can prove such a set of flowers has elements which all smell the same,
obviously. Consider a set larger than size n with elements that do not smell the
same:

X = {f1 — Sweet, fo — Sweet, f3 — Sweet, fy — Disgusting, f5 — Sweet}
Assume n = 4. Then remove a single element (lets remove f.).
X = {f2 — Sweet, f5 — Sweet, f4 — Disgusting, fs — Sweet}

This clearly contradicts our hypothesis, as it’s a subset size n which all elements
do not smell the same. The circular reasoning “assume proof, therefore proof”
is the issue here.

Exercise 2F-3. While Induction [10 points]. There are two cases which
we must consider because of the boolean, b. We consider the true case first.

D1 :: (byo) true D2 :: (z:=x+2,0) 0" D3 : (whilebdoz:=z+2,0') 0"

D :
(whilebdo z:=xz+2,0) | o”

Peer Review ID: 65765509 — enter this when you fill out your peer evaluation via gradescope

We need to consider the possible states o and show that x must be even in
each. Because integer arithmetic is deterministic and any number incremented
by two is has an unchanged parity, we can use the induction hypothesis on D2
to prove that x in state ¢’ must be even. Because x is even and we are adding
an even number to it, we know the result is even. Therefore x is even in state
o’ (the property holds).

If we now apply the inductive hypothesis on D3 we know all further sigmas
generated in the loop will be of the same form as D2, always resulting in an
even number added to x, and x remains even. Therefore ¢” always has an even
x. Because ¢” in D3 is the same as ¢” in our base case, we therefore know the
“while true” case only returns x s.t. the parity is unchanged.

Next lets consider the case that b is false.

D1 :: (b,o) | false
(whilebdo z:=z+2,0) | o
Because sigma is always unchanged under this condition, x will remain un-
changed. Therefore the parity will remain unchanged. We do not need to
induct because we immediately see that D1 results in an unchanged state (there
is only the base case).

Maybe a more satisfying proof, but equally valid,

D1 :: (b,o) | false D2 :: (skip,o) | o
(whilebdoz:=x+2,0) | o

We can now use the inductive hypothesis on D2 and see that ¢ is unchanged
and our property holds.

D ::

Proof Conclusion and Thoughts We have proven no parity change on the
variable x occurs in any execution of the IMP command presented. This is
stronger than proving the property, and our property is implied by the proof.

Exercise 2F-4. Language Features, Large-Step [12 points]. Lets begin
with some notation. We no longer have a single terminal state sigma, but rather
we use the Terminal type. Just as in the OCaml code, we have:

termination =
| Normal of sigma
| Exceptional of sigma * n

But this syntax becomes burdensome, so we use the notation from the homework
assignment, o exc n, for exceptional termination, and use t for an uncertain
termination (normal or exceptional). For each rule, I'll offer a little bit of
reasoning in English to illustrate how I come up with the large-step semantics.

Peer Review ID: 65765509 — enter this when you fill out your peer evaluation via gradescope

3 2F-3 While Induction
- 0 pts Correct

Peer Review ID: 65765509 — enter this when you fill out your peer evaluation via gradescope

Page 8

We need to consider the possible states o and show that x must be even in
each. Because integer arithmetic is deterministic and any number incremented
by two is has an unchanged parity, we can use the induction hypothesis on D2
to prove that x in state ¢’ must be even. Because x is even and we are adding
an even number to it, we know the result is even. Therefore x is even in state
o’ (the property holds).

If we now apply the inductive hypothesis on D3 we know all further sigmas
generated in the loop will be of the same form as D2, always resulting in an
even number added to x, and x remains even. Therefore ¢” always has an even
x. Because ¢” in D3 is the same as ¢” in our base case, we therefore know the
“while true” case only returns x s.t. the parity is unchanged.

Next lets consider the case that b is false.

D1 :: (b,o) | false
(whilebdo z:=z+2,0) | o
Because sigma is always unchanged under this condition, x will remain un-
changed. Therefore the parity will remain unchanged. We do not need to
induct because we immediately see that D1 results in an unchanged state (there
is only the base case).

Maybe a more satisfying proof, but equally valid,

D1 :: (b,o) | false D2 :: (skip,o) | o
(whilebdoz:=x+2,0) | o

We can now use the inductive hypothesis on D2 and see that ¢ is unchanged
and our property holds.

D ::

Proof Conclusion and Thoughts We have proven no parity change on the
variable x occurs in any execution of the IMP command presented. This is
stronger than proving the property, and our property is implied by the proof.

Exercise 2F-4. Language Features, Large-Step [12 points]. Lets begin
with some notation. We no longer have a single terminal state sigma, but rather
we use the Terminal type. Just as in the OCaml code, we have:

termination =
| Normal of sigma
| Exceptional of sigma * n

But this syntax becomes burdensome, so we use the notation from the homework
assignment, o exc n, for exceptional termination, and use t for an uncertain
termination (normal or exceptional). For each rule, I'll offer a little bit of
reasoning in English to illustrate how I come up with the large-step semantics.

Peer Review ID: 65765509 — enter this when you fill out your peer evaluation via gradescope

Throw e

This should result in an unchanged sigma with an uncaught exception derived
from e.

(e,o) I n

(throw(e),o) || o exc n

Try ¢ Catch x co

Here we always execute c¢; and produce a new sigma. depending on how it
terminates we need two possible methods of “catching”.

Normal execution catch execute ¢; and terminate normally.

(c1,0) 4 o

(try c1 catch x ca,0) || o’

Exceptional execution catch execute ¢; and terminate with an exception.
Note that the lowercase t is a single instance of the termination type T, meaning
that c2 either terminates normally or exceptionally.

(c1,0) o’ exen (cz,0lx:=n]) |t

(try c1 catch x ca,0) | t

after c1 finally co

There are three possible rules for this command. We always begin by executing
c1 and producing a new sigma.

Normal execution after Execute ¢; and terminate normally, execute ¢ and

terminate with t.
(c1,0) 4o’ (co,0") |t

(after c1 finally ca,0) | ¢

Exceptional execution on cl with normal c2 execute ¢; and throw an
exception, then terminate cy normally so the original exception survives.

(c1,0) Vo’ excn {(co,0') | 0"

(after c1 finally ca,0) |} 0" excn

Exceptional execution on cl with exceptional c2 execute c¢; and ter-
minate with an exception then terminate c; exceptionally so the exception is

overwritten.
(c1,0) I o' exeng (ca,0') I 0" excny

(after c1 finally ca,0) | o' excny

Peer Review ID: 65765509 — enter this when you fill out your peer evaluation via gradescope

4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65765509 — enter this when you fill out your peer evaluation via gradescope

Page 11

Exercise 2F-4. Language Features, Analysis [6 points]. The key differ-
ence between small-step and large-step is in the notation, they support similar
ideas in different formats. I’ll argue notation is important to how we process
ideas and that less complex and more visual notation is almost always pre-
ferred. I believe the large-step encoding of exceptions in IMP is more natural
because it closely matches how one would implement the new concept, where
the small-step in this case is less closely matched to how the language would
be implemented. Further, the large-step version of exceptions are more concise,
requiring less computation to describe and understand. The main distinction
I want to isolate is the new notation introduced in the previous example. We
gain the expressive termination type, t, and the exceptional termination o ezxc n.
This notation provide a clear description of the exception which is cohesive with
our prior ¢ termination. The small-step doesn’t seem to capture this with any
elegance. Termination with “skip” and “throw n” is not as clear to me as the
sigma state termination. While intuitively handled in large-step, the excep-
tion model feels more arbitrary in small-step. I'll motivate this with a simple
example on throw.

H :=
| throw H

r 3=
| thrown ; c
Local reduction rules:

(throw n; ¢, o) — (throw n, o)

Where throw n is the exceptional termination of a program in IMP. For other
operations I find a similar correspondence, where the rules in small-step are less
direct than the large-step. Tracking exceptions using the “throw n” notation is
cumbersome. I find a needless complexity here when compared to the large-step
shown above. As a final point, see figure 1.

(e,o) In

(throw(e),o) | o exc n

Figure 1: Lorge

Peer Review ID: 65765509 — enter this when you fill out your peer evaluation via gradescope

5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65765509 — enter this when you fill out your peer evaluation via gradescope

Page 13

