12F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 65777911 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

def

P(n) =VX e P(F). | X|<n = (Vf, f' € X. smells(f) = smells(f))

(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let m be arbitrary and assume that all subsets of F' of size at most
n contain flowers that smell the same. We will prove that the same thing holds for all
subsets of size at most n + 1. Pick an arbitrary set X such that |X| = n + 1. Pick two
distinct flowers f, f' € X and let’s show that smells(f) = smells(f’). Let ¥ = X — {f} and
Y’ =X —{f'}. Obviously Y and Y’ are sets of size at most n so the induction hypothesis
holds for both of them. Pick any arbitrary x € Y NY”. Obviously, x # f and = # f’. We have
that smells(f’) = smells(x) (from the induction hypothesis on Y) and smells(f) = smells(z)
(from the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the
inductive step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

Answer: The false assumption here is that the set Y NY”’ will always be non empty. This
(obviously) doesn’t hold when n = 1 and the induction is on n = 2. After removing f and
f,YNY =0 and z isn’t defined.

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z:=z+2,0) || ¢

then ¢’(z) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

Answer: By induction on the derivation of while.

2

Peer Review ID: 65777911 — enter this when you fill out your peer evaluation via gradescope

2 2F-2 Mathematical Induction
- 0 pts Correct

Peer Review ID: 65777911 — enter this when you fill out your peer evaluation via gradescope

Page 5

Proof. Given any o where even(o(x)) holds, we prove o(z) A (while bdo x := x + 2,0) ||
o' = even(o'(z)) inductively.
Base Case: Consider the derivation D produced by the while false rule:

B (b,0) |} false
(whilebdox:=x+2,0) |} o

Since o = o, even(o(x)) holds by the definition.
Inductive step: The only other applicable rule as the last step of the derivation is the
while true rule, so consider the derivation D:

" Dyzbo)dtrue Dyuz:=x+2,0) 0 Ds :: (while bdo v :==x+2,01) |} 0
(while bdo v :=x+2,0) || o

By the property of the natural numbers, we know that x := z 4+ 2 will leave x even
if it was initially even. We know by the definition of ¢ that x is initially even. Then by
combination of these o1(x) must be even as well. By the inductive hypothesis on D3, and
the fact that oq(x) is even, o’(x) must also be even. O

Here is a representative case for the inductive step:

Let 0 = {x =2} and b = x < 4. Then the when true case is used since 2 < 4 evaluates
to true. Then the update results in 0’ = {z = 4}. We see that even(c¢’) still holds here. One
more iteration of the loop results in ¢” = {z = 6}. Finally, the derivation reaches the base
case and the while false rule produces ¢” which remains even.

Exercise 2F-4. Language Features, Large-Step [12 points]. We extend IMP with a
notion of integer-valued exceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type T to represent command terminations, which can either be normal or exceptional
(with an exception value n € Z):

T = o “normal termination”
| o excn “exceptional termination”

We use t to range over possible terminations 7. We then redefine our operational semantics
judgment:
(c,o) 4 T

The interpretation of
(c,o) |} 0’ excn

is that command ¢ terminated abruptly by throwing an exception with value n € Z at a
point in ¢’s execution when the state was ¢/. We only model one type of exception, but
every exception has an integer “argument” n (or “payload” or “value”) that is set when the
exception is thrown and available when the exception is caught.

3

Peer Review ID: 65777911 — enter this when you fill out your peer evaluation via gradescope

3 2F-3 While Induction
- 0 pts Correct

Peer Review ID: 65777911 — enter this when you fill out your peer evaluation via gradescope

Page 7

Answer:

THROW ©,0) ¥ n TRY-NORM e,0) 4 o7
(throw e,o) || o excn (try c; catch x c3) | o
(c1,0) I o’ exce (8 = g,0') Lo’ (cg, 0"y U t

TRY-EX
(try c1 catch x co) | t

(c1,0) | o (e, 0"y I t

AFTER-NORM
(after c; finally co,0) | t

AFTER-EX1 (c1,0) Yo exce (c2,0") L o”
(after ¢ finally ¢z, 0) |} (throw e, ")
AFTER-EX2 e1,0) ¥ o ezc e (ca, 0"y § 0" exc eq

(after c; finally ¢z, 0) | (throw es, o)

Exercise 2F-4. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

Answer

It would not be more elegant to describe IMP-with-exceptions using small step semantics.
Small-step enables the language designer to describe the smaller, one-step steps taken to
arrive at a given term. This is often useful when the intermediary steps are “interesting”,
more precisely, when expressing these steps provides useful insights about the execution
process. In such a case, the designer sacrifices the succinctness of the semantics to elucidate
the meaning of the rules at a finer granularity and ensure that the details are clear to
the reader. However, IMP-with-exception does not have any particularly interesting single-
step operations. For example, the small-step granularity for specifying how an exception is
thrown for the after-finally construct adds nothing interesting that the reader cannot get
by observing the big-step semantics. Perhaps this is in part because the constructs in IMP
are very familiar to us and don’t introduce anything surprisingly new. In any case, big-step
provides the useful information without removing any of the interesting details, and so it is
the more elegant choice for the semantics of IMP-with-exceptions.

5

Peer Review ID: 65777911 — enter this when you fill out your peer evaluation via gradescope

4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65777911 — enter this when you fill out your peer evaluation via gradescope

Page 9

Answer:

THROW ©,0) ¥ n TRY-NORM e,0) 4 o7
(throw e,o) || o excn (try c; catch x c3) | o
(c1,0) I o’ exce (8 = g,0') Lo’ (cg, 0"y U t

TRY-EX
(try c1 catch x co) | t

(c1,0) | o (e, 0"y I t

AFTER-NORM
(after c; finally co,0) | t

AFTER-EX1 (c1,0) Yo exce (c2,0") L o”
(after ¢ finally ¢z, 0) |} (throw e, ")
AFTER-EX2 e1,0) ¥ o ezc e (ca, 0"y § 0" exc eq

(after c; finally ¢z, 0) | (throw es, o)

Exercise 2F-4. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

Answer

It would not be more elegant to describe IMP-with-exceptions using small step semantics.
Small-step enables the language designer to describe the smaller, one-step steps taken to
arrive at a given term. This is often useful when the intermediary steps are “interesting”,
more precisely, when expressing these steps provides useful insights about the execution
process. In such a case, the designer sacrifices the succinctness of the semantics to elucidate
the meaning of the rules at a finer granularity and ensure that the details are clear to
the reader. However, IMP-with-exception does not have any particularly interesting single-
step operations. For example, the small-step granularity for specifying how an exception is
thrown for the after-finally construct adds nothing interesting that the reader cannot get
by observing the big-step semantics. Perhaps this is in part because the constructs in IMP
are very familiar to us and don’t introduce anything surprisingly new. In any case, big-step
provides the useful information without removing any of the interesting details, and so it is
the more elegant choice for the semantics of IMP-with-exceptions.

5

Peer Review ID: 65777911 — enter this when you fill out your peer evaluation via gradescope

5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65777911 — enter this when you fill out your peer evaluation via gradescope

Page 11

