Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

P(n) € VX € P(F). |X|<n = (Vf, [€ X. smells(f) = smells(f"))

(the notation |X| denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+1. Pick an arbitrary set X such that | X| = n+1. Pick two distinct flowers
f, f" € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y' = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both
of them. Pick any arbitrary x € Y NY’. Obviously, z # f and = # f’. We have that
smells(f") = smells(z) (from the induction hypothesis on Y') and smells(f) = smells(z) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

Mainly, the last highlighted sentence, in conjunction with the others, creates the problem
in this proof. It assumes the intersection between Y and Y” is non-empty, however, if | X| = 2
then the intersection between Y and Y’ will indeed be the empty set. There is no logical
reasoning for what is done when reaching the empty set.

If they tried to set their base case to n = 0, then this argument would simply fail at
"Pick two distinct flowers f, f/ € X7 when |X| = 1. Further proving that this argument is
illogical, as it assumes impossible properties of sets.

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:

For any BExp b and any initial state o such that o(x) is even, if
(whilebdo z:=x+2,0) | ¢

then o’(x) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

Base Case:
Let the base case be where (b, o) |} False...

Dy :: (b,o) | false
(whilebdo z:=x+2,0) |} o

Let ¢ represent the command (z := x + 2), and W represent the command while b do ¢

Pick arbitrary ¢” s.t. D" :: (W, 0) |} o”.

By inversion and determinism of boolean expressions, D" also uses the rule for while
false, thus ¢’ = o

By definition, o(x) is even, thus ¢”(x) is even

Inductive Step:
We can now induct on the case where (b,0) | True...

Dy (b,o) | true Dy:{z:=x+2,0)| oy Dj :: (whilebdo z :=x+2,0y) | ¢
(whilebdo x:=xz+2,0) | o

Let ¢ represent the command (z := x + 2), and W represent the command while b do ¢

Pick arbitrary o” s.t. D" :: (W,0) | o”.

By inversion and determinism of boolean expressions, D" also uses the rule for while
true, and has subderivations DJ :: (¢,0) | of and Dj :: (W, 07) |} o”

By inductive hypothesis on Dy (with D}): oy = of. We now have Df :: (W, 0¢) || o”

By inductive hypothesis on D5 (with Df): ¢’ = ¢”

It suffices to show that o1(z) is even, proving that arbitrary of(z) is also even. If we
show oy(z) is even, then we have D3 :: (W,01) | ¢’ where o'(z) will be even by inductive

reasoning provided the aforementioned base case and inductive step.
We have:

(r:=x+2,0) oy

(x+2,0)n oy=0r:=n]
(x:=2x+2,0) o4

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

It now suffices to show (x + 2,0) | n results in even n.

(o) Yo(x) (2,002 n=o(@)+2
(x+2,0)In
By definition, o(z) is even. By definition of even numbers, 2 is even. By definition of

integer addition, two even integers added together indeed stay even. Thus o(z) 4+ 2 = n is
indeed even.

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-4. Language Features, Large-Step [12 points]. We extend IMP with a
notion of integer-valued ezceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type T to represent command terminations, which can either be normal or exceptional
(with an exception value n € Z):

T = o “normal termination”
| o excn “exceptional termination”

We use t to range over possible terminations 7. We then redefine our operational semantics
judgment;:
(c,o) 4 T

The interpretation of
(c,o) | 0’ excn

is that command c¢ terminated abruptly by throwing an exception with value n € Z at a
point in ¢’s execution when the state was ¢’. We only model one type of exception, but
every exception has an integer “argument” n (or “payload” or “value”) that is set when the
exception is thrown and available when the exception is caught.

Note that our previous command rules must be updated to account for exceptions, as in:

(c1,0) Y o’ excm (c,o) Yo' (cp0) Ut

(c1;¢9,0) I o' excn (cr;e9,0) | t

seq2

We also introduce three additional commands:

throw e
try ¢y catch x co
after ¢; finally co

e The throw e command raises an exception with argument e.

e The try command executes ¢;. If ¢; terminates normally (i.e., without an uncaught
exception), the try command also terminates normally. If ¢; raises an exception with
value e, the variable x € L is assigned the value e and then ¢, is executed.

e The finally command executes c¢;. If ¢; terminates normally, the finally command ter-
minates by executing co. If instead c¢; raises an exception with value ey, then cs is
executed:

— If ¢y terminates normally, the finally command terminates by throwing an excep-
tion with value e;. (That is, the original exception e; is re-thrown at the end of
the finally block, as in Java.)

— If ¢, throws an exception with value es, the finally command terminates by throw-
ing an exception with value e;. (That is, the new exception es overrides the
original exception ey, also as in Java.)

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

These constructs are intended to have the standard exception semantics from languages like
Java, C# or OCaml — except that the catch block merely assigns to x, it does not bind it
to a local scope. So unlike Java, our catch does not behave like a let. We thus expect:

x :=0 ;
{ try
if x <= 5 then throw 33 else throw 55
catch x
print x } ;
while true do {
x :=x - 15 ;
print x ;
if x <= 0 then throw (x*2) else skip
}

to output “33 18 3 -12” and then terminate with an uncaught exception with value -24.
Give the large-step operational semantics inference rules (using our new judgment) for
the three new commands presented here. You should present six (6) new rules total.

(e,o) I n

(throw e, o) || 0 exc n

throw

<cla U> ‘U’ U/

(try ¢; catch z ¢y, o) | o’

/ trynormal

(er,0) o' exen (x:=n,0) | o'[x:=n] (co,0'[x:=n]) | "
(try ¢; catch z ¢, o) | 0”

t Yexception

<C1: U) ~U« o’ ”
(try ¢; catch z ¢y, 0) | o” Ynormal
1,0 OJ C 70‘/ T)

(after ¢ finally ¢, o) | ¢

(cr,0) J o’ excn (cy,0') |} 0"
(after ¢ finally ¢, 0) || 0" exc n

finallyexc,

(c1,0) 0" excn {ca,0") || 0" excm

: finall
(after ¢, finally ¢y, o) || 0" exc m e

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-5. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

It is arguably far more elegant to describe "IMP with Exceptions” with small-step con-
textual semantics, primarily due to the pitfall large-step operational semantics encounter
when faced with non-terminating command sequences. It is well-known that contextual se-
mantics allows us to address the issue of potential non-terminating execution models. We
can leverage this characteristic of contextual semantics by using it to describe ”IMP with Ex-
ceptions”, thus allowing us to identify exceptional command terminations, which may have
otherwise gone unidentified in the scenario where we use large-step operational semantics.
Through taking atomic steps through the execution of an "IMP with Exceptions” program,
we are not only able to better reason about the behavior of our program during its execution,
but we are also able to better incorporate the benefits of our newly introduced commands
and exceptional termination states.

Perhaps one could make the counterargument that it ”feels” more natural to describe
”IMP with Exceptions”, as the interpretability of the newly introduced commands and prior
commands within IMP is far greater than compared to contextual semantics. Here I argue
that it’s not the interpretability of the rules themselves that matter the most, but rather
it’s the interpretability of an arbitrary execution model within our programming language
which outweighs all else. The type of semantics used to define our programming language
serves as a direct interface for this interpretation. Consequently, operational semantics is
just far too constraining in the case of ”IMP with Exceptions”, for the reasons and by the
arguments aforementioned.

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

No questions assigned to the following page.

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

Exercise 2C. Language Features, Coding. Download the Homework 2 code pack from
the course web page. Modify hw2.ml so that it implements a complete interpreter for “IMP
with exceptions (and print)”. You may build on your code from Homework 1 (although
the let command is not part of this assignment). Using OCaml’s exception mechanism
to implement IMP exceptions is actually slightly harder than doing it “naturally”, so I
recommend that you just implement the operational semantics rules. The Makefile includes
a “make test” target that you should use (at least) to test your work.

Hint: to check if a termination term is an exception, use syntax like

begin match term with

| Normal -> do_something

| Exceptional(n) -> do_something_else using n
end

Modify the file example-imp-command so that it contains a “tricky” terminating IMP
command (presumably involving exceptions) that can be parsed by our IMP test harness
(e.g., “imp < example-imp-command” should not yield a parse error).

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

Peer Review ID: 306397962 — enter this when you fill out your peer evaluation via gradescope

