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All subsequent answers should appear after the first page of your submission and may be
shared publicly during peer review.

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

def

P(n) =VX e P(F). | X|<n = (Vf, f' € X. smells(f) = smells(f’))

(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+1. Pick an arbitrary set X such that | X| = n+1. Pick two distinct flowers
f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y' = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both
of them. Pick any arbitrary x € Y NY’. Obviously, x # f and z # f’. We have that
smells(f’) = smells(z) (from the induction hypothesis on Y) and smells(f) = smells(x) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

Y NY’ # () does not hold under our base case, so this induction proof can not prove
the theorem.

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z :=x+2,0) | o

then ¢’(x) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!
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Base case: while false
Case: the last rule used in D was the one for while false
(b,o) |} false
(whilebdoz:=x+2,0) 0

This means o’ = o, so ¢'(x) = o(x), which is even.
Inductive case: while true
Case: the last rule used in D was the one for while true

(byo) |} true (r:=x+2,0) 0y Dj:(whilebdoz:=z+201) 0
(whilebdo z:=z+2,0) | o

With the rules for assignment,
(x,o) |} o(x) (2,0) 2

(x+2,0) | o(x)+2
(x:=x+2,0) | o[z :=0(x)+2]

This means o1 = o[z := o(z) +2]. Given that o(z) is even, oy(z) is even according to
the nature of addition.

Our induction hypothesis on Dy is that if o;(z) is even, o'(z) in D; will be even.

By this induction hypothesis above, and since we’ve already derived that o;(x) is even,
according to the while true rule, o’(x) is even.

Exercise 2F-4. Language Features, Large-Step [12 points]. We extend IMP with a
notion of integer-valued exceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type T to represent command terminations, which can either be normal or exceptional
(with an exception value n € Z):

T »= ¢ “normal termination”
| o excn “exceptional termination”

We use t to range over possible terminations 7. We then redefine our operational semantics
judgment:
(c,o) 4 T

The interpretation of
(c,o) |} 0’ excn

is that command ¢ terminated abruptly by throwing an exception with value n € Z at a
point in ¢’s execution when the state was ¢’. We only model one type of exception, but
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to output “33 18 3 -12”7 and then terminate with an uncaught exception with value -24.
Give the large-step operational semantics inference rules (using our new judgment) for
the three new commands presented here. You should present six (6) new rules total.

(e,o) I n

(throw e,0) || 0 exc n

(c1,0) | o (c1,0) § 0’ excn (cy,0lx:=n]) |t
(try ¢1 catch x ¢3) |} o (try ¢1 catch x c) |} ¢

(c1,0) o' (cg,0') Jt
(after ¢ finally co) |} ¢

(c1,0) L o' exen (cg,0") |} 0 (c1,0) o' excn (cy,0') |} 0" exc
(after ¢ finally c3) |} 0” exc n (after ¢; finally co) |} 0" exc n’

Exercise 2F-5. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

I agree that small-step contextual semantics are more natural than large-step op-
erational semantics when describing "IMP with exceptions”. For example, for the
"after-finally” case, it is shown obviously in small-step semantics that the value of ¢;
is discussed first, then we decide if the value of ¢, will affect our derivation. However,
in large-step semantics, we just mix all the cases together, and it’s less trivial to realize
the proper derivation flow in practice. Therefore, I believe in this case, small-step se-
mantics are more natural in the aspect of implementation, while large-step semantics
look more elegant in proofs.

Exercise 2C. Language Features, Coding. Download the Homework 2 code pack from
the course web page. Modify hw2.ml so that it implements a complete interpreter for “IMP
with exceptions (and print)”. You may build on your code from Homework 1 (although
the let command is not part of this assignment). Using OCaml’s exception mechanism
to implement IMP exceptions is actually slightly harder than doing it “naturally”, so I
recommend that you just implement the operational semantics rules. The Makefile includes
a “make test” target that you should use (at least) to test your work.

Hint: to check if a termination term is an exception, use syntax like

begin match term with
| Normal -> do_something
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to output “33 18 3 -12”7 and then terminate with an uncaught exception with value -24.
Give the large-step operational semantics inference rules (using our new judgment) for
the three new commands presented here. You should present six (6) new rules total.
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(throw e,0) || 0 exc n

(c1,0) | o (c1,0) § 0’ excn (cy,0lx:=n]) |t
(try ¢1 catch x ¢3) |} o (try ¢1 catch x c) |} ¢
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(after ¢ finally co) |} ¢

(c1,0) L o' exen (cg,0") |} 0 (c1,0) o' excn (cy,0') |} 0" exc
(after ¢ finally c3) |} 0” exc n (after ¢; finally co) |} 0" exc n’

Exercise 2F-5. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

I agree that small-step contextual semantics are more natural than large-step op-
erational semantics when describing "IMP with exceptions”. For example, for the
"after-finally” case, it is shown obviously in small-step semantics that the value of ¢;
is discussed first, then we decide if the value of ¢, will affect our derivation. However,
in large-step semantics, we just mix all the cases together, and it’s less trivial to realize
the proper derivation flow in practice. Therefore, I believe in this case, small-step se-
mantics are more natural in the aspect of implementation, while large-step semantics
look more elegant in proofs.

Exercise 2C. Language Features, Coding. Download the Homework 2 code pack from
the course web page. Modify hw2.ml so that it implements a complete interpreter for “IMP
with exceptions (and print)”. You may build on your code from Homework 1 (although
the let command is not part of this assignment). Using OCaml’s exception mechanism
to implement IMP exceptions is actually slightly harder than doing it “naturally”, so I
recommend that you just implement the operational semantics rules. The Makefile includes
a “make test” target that you should use (at least) to test your work.

Hint: to check if a termination term is an exception, use syntax like

begin match term with
| Normal -> do_something
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