Exercise 2F-2. Mathematical Induction [S points].

Proof: Let F' be the set of all flowers and let smells(f) be the smell of the flower f € F.
(The range of smells is not so important, but we'll assume that it admits equality.) We'll also assume that
Fis countable.

Let the property P(n) mean that all subsets of F’ of size at most n contain flowers that smell the same.
P(n) =VX € P(F),|X| <n= (Vf, f € X, smells(f) = smells(f'))

One way to formulate the statement to prove is Vn > 1, P(n). We'll prove this by induction on n, as

follows:

Base Case: n = 1.

Obviously, all singleton sets of flowers contain flowers that smell the same (by the definition of P(n)).

Base Case: n = 1.

Obviously, all singleton sets of flowers contain flowers that smell the same (by the definition of P(n)).

Induction Step:

Let n be arbitrary and assume that all subsets of F' of size at most n contain flowers that smell the
same.

We will prove that the same thing holds for all subsets of size at most . + 1. Pick an arbitrary set X
such that | X | =n + 1.

Pick two distinct flowers f, f € X and let's show that smells(f) = smells(f’).

LetY =X —{f}andY' = X — {f'}.
Obviously, Y and Y are sets of size at most n, so the induction hypothesis holds for both of them.

Pick any arbitrary z € Y N Y.
Obviously, z # f and z # f'.

smells(f') = smells(z) (from the induction hypothesis on Y))

smells(f) = smells(z) (from the induction hypothesis on Y”)

Hence, smells(f) = smells(f'), which proves the inductive step, and the theorem.
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Exercise 2F-3. While Induction [10 points].
(whilebdo z := z + 2,0) |} o'

where o (z) is even, and we need to show that o’ (z) remains even.

The two key cases for the execution of a while-loop are:

1. Best Case (Termination without loop execution)

* If b is false in o, the loop does not execute and 6'=c
e Since o(x) is even by assumption, 6'(x)=0(x) is also even.
The property holds.

2. Inductive Step (Loop Executes at Least Once)

e Ifbis true in o, the loop does executes atleast once.
e The first iteration updates x:=x+2, and we obtain a new state
ol where:

o1(z) = o(z) + 2.
* Since the sum of two even numbers is even, o1 (2) remains even.

® The remaining execution follows the derivation:

(whilebdo z := = + 2,07) |} 0.

* By the inductive hypothesis, o’ (z) remains even.

By the base case, the property holds when the condition is initially
false. By the inductive step, assuming the property holds for states
where x remains even after loop body execution, it must hold for the
current state as well.

Consequently, for any ¢ such that o(x) is even, 6'(x) will also be even
after executing the while-loop. This completes the structural induction
proof.
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Exercise 2F-4. Language Features, Large-Step [12 points].

Large-step operational semantics inference rules for the three new commands: throw e,
try ¢1 catch x c2, and after c1 finally ¢2 are as follows:

Rules for throw e:

1. Throwing an exception:

(e,o) I n

(throw e, o) | o excn

This rule states that evaluating throw e results in an exceptional termination with
value
n, where n is the evaluation of the expression e

Rules for try c1 catch x c2

2. Normal execution of ¢1 (no exception thrown)

(e1,0) § o’

(try ¢; catch z ¢3,0) || o’

It executing c1 completes normally without an exception, the entire try-catch block
terminates normally with the final state o

3. Handling an exception in catch

(e1,0) J o' excn (cp,0'[z—n]) |t

(try ¢; catch z ¢y,0) |} ¢

If ¢, throws an exception n, the value of & is set to n in the state o', and then ¢, is executed. The

final result of the entire block is the result of executina ¢-.

Rules for after c1 finally c2:

4. Normal execution of c1 followed by c2

<C1, 0> U’ U, <C2a UI) ‘U t
(after ¢; finally ¢o,0) |} ¢

If ¢; executes normally and results in state o”, then ¢y is executed. The final termination result of

the entire block is the result of cs.
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5. C1 raises an exception, but c2 executes normally (exception rethrown)

(e1,0) | o' excer (e2,0') | o

(after ¢; finally ¢y, 0) |} 0 exc e;

If ¢; throws an exception ey, but ¢y executes normally, the final termination keeps the exception e;
(it is rethrown after executing the finally block).

6. C1 raises an exception, and c2 overrides it with a new exception

(e1,0) | o’ excey (ca,0') || 0" exces

(after ¢; finally ¢y, 0) |} o exc ey

If €1 throws an exception e, and ¢z also throws an exception ey, the final termination of the block

is with ez, overriding e;.

In conclusion:

e The throw rule directly raises an exception with the value obtained from the
expression.

e The try-catch rules handle two scenarios: if the first command c1 completes normally,
the entire block completes normally. If c1 raises an exception, it is caught. The value
is assigned to x, and c2 is executed.

e For the finally command, if c1 executes without exceptions, then c2 executes next,
with the termination result depending entirely on c2. If c1 throws an exception, ¢c2 is
still executed. Depending on whether c2 raises a new exception or completes
normally, the final result is determined.

Exercise 2F-5. Language Features, Analysis [6 points].

Using small-step semantics for exceptions is more natural and elegant because it provides
fine-grained control over execution, making it easier to track how exceptions propagate
through a program. Since exceptions can occur at any point during execution, small-step
semantics captures this process step by step, rather than just showing the final outcome. This
is especially useful for modeling non-termination, as it allows us to see if a loop runs indefinitely
before an exception occurs. Additionally, small-step semantics is more modular and
extendable, making it easier to introduce features like stack traces or nested exceptions
without overhauling the entire system. It also closely mirrors how real-world languages like
Java and Python handle exceptions—execution doesn’t happen in one big leap but as a series
of incremental steps.

On the other hand, large-step semantics has some advantages, such as being simpler and
more readable for small programs where we only care about the final result. However, this
approach falls short when exceptions interrupt execution before completion, as it doesn’t show
the intermediate steps leading to an error. Because exception handling is inherently about
managing disruptions mid-execution, small-step semantics provides a clearer and more
realistic representation of how exceptions behave in practice. Therefore, small-step semantics
is the more natural choice for modeling exceptions in IMP.
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