Exercise 2F-2. Mathematical Induction [5 points|. Proof: Let F be the set of all
flowers and let smells(f) be the smell of the flower f € F. (The range of smells is not so
important, but we’ll assume that it admits equality.) We’ll also assume that F is countable.
Let the property P(n) mean that all subsets of F of size at most n contain flowers that smell
the same.

def

P(n) = VX € P(F). |X|<n = (Vf, f" € X. smells(f) = smells(f"))

(the notation |X| denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+ 1. Pick an arbitrary set X such that |X| =n+ 1. Pick two distinct flow-
ers f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X —{f} and Y' = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both of them.
Pick any arbitrary 2 € Y NY’. Obviously, # [and x # f'. We have that smells(f") =
smells(z) (from the induction hypothesis on Y) and smells(f) = smells(z) (from the induc-
tion hypothesis on Y”). Hence smells(f) = smells(f’), which proves the inductive step, and
the theorem.

Here, the proof makes an incorrect assumption in the inductive step while picking the
two flowers from convenient sets Y and Y’. The problem is that the intersection of Y and Y’
is not necessarily non-empty, and we observe this when trying to show that P(1) = P(2),
which fails. It is incorrect to assume that some common flower exists in both Y and Y.
So, we cannot apply the inductive hypothesis to these potentially non-existent flowers to
complete the proof argument.

Peer Review ID: 306240540 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 3 and 4

Peer Review ID: 306240540 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-3. While Induction [10 points].

Theorem. For any BEzp b and any initial state o such that o(z) is even, if
(while bdo x :=x +2,0) || o/
then o'(x) is even.

Proof. We will prove this property by performing structural induction on the derivation tree
(based on the IMP large-step semantics rules).
There are two big-step rules for a while command.

‘WHILE-FALSE
(b,o) | false

(while b do ¢,0) | &

WHILE-TRUE
(b,o) | true (c; while b do ¢,0) || o’

(while b do ¢,0) | o’
So, we know the last rule could have either been the true or false case of the while command.

1. While-False Case (Base case): Here, b evaluates to false according to the premises, so
the loop terminates immediately and hence, o’(z) is also even.

2. While-True Case (Inductive case): Here, b evaluates to true, and we run the loop once
more recursively. Given, o(z) is even. So, one the leaves of the proof tree becomes
(x:=x+2;whilebdox:=x+20)| 0.

Using the large-step rule for seq, first we run the set command ((z := x4 2,0) |} 01)
which results in new memory state oy, where x is again even. Now, with this new
o1, we make another recursive loop call ((while b do (z := x4+ 2),01) | ¢'), and now
this invokes the inductive hypothesis that if a loop terminates from a state where x
is even, then the final state will also have x even (re-using sub derivation within the
proof tree).

The cases are exhaustive by definition, and by using structural induction on the derivation

tree, we have proved the property about the while command.
O

Peer Review ID: 306240540 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 306240540 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-4. Language Features, Large-Step [12 points]. We will extend the
large-step operational semantics with 6 rules by adding 1, 2, and 3 rules for the throw,
try — catch, and after — finally constructs, respectively.

THROW
(e,o)dn

(throw e,0) |} (0’ exc n)

TRY-CATCH NORMAL TRY-CATCH EXCEPTION
{c1,0) | o (c1,0) | o’ excn (ca,0'[x > n)) |t

(try ¢ catch z c,0) |} o (try c1 catch T ¢) | ¢
FINALLY-AFTER NORMAL FINALLY-AFTER RETHROW FINALLY-AFTER OVERRIDE
{c1,0) I o (cg,0"Y It {c1,0) |} o excn (c2,0) I 0" {c1,0) J o excn (c2,0") |} 0" exc n/

(after ¢; finally co,0) | £ (after ¢; finally ¢y, 0) || 0”exc n (after ¢; finally ¢z, 0) |} 0" exc n’

Peer Review ID: 306240540 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 306240540 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-4. Language Features, Analysis [6 points]. I believe that describing the
operational semantics for exceptions in IMP would have been more natural given the nature
of the abrupt control flow changes that exceptions provide. I think small-step semantics are
more well-suited to model such changes in an incremental and compositional fashion, where
each rule precisely defines the next state, leading to simpler and more uniform rules. Instead,
we can define exceptions as a sequence of small steps and have a matching handler at the
top level, which gets triggers for its respective error cases.

Modeling such behavior feels rather cumbersome via large-step as we have to hard code
rules for multiple scenarios (e.g., three rules for finally — after). I felt that this method yielded
complicated and repetitive rules to model one style of exceptional behavior.

Peer Review ID: 306240540 — enter this when you fill out your peer evaluation via gradescope

